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Presentation structure

1. Motivation and empirical application
2. Identification in the presence of missing observations

3. Efficient estimation and inference under missingness at
random

4. Simulation study
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Motivation and empirical application



Outline and motivation

We extend the existing literature on missing-data models
defined by conditional moment restrictions by:

1. Computing the efficiency bound and proposing a ‘doubly
robust’ estimator that attains the efficiency bound

2. Explicitly addressing the role of non-missing
endogenous variables in obtaining efficiency gains by
using the entire sample

3. Carrying out simulations showing that the efficiency
gains from using the proposed estimator are
comparable with the maximum gains DGP can deliver,
and applying it to a real model and data
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Literature

- Robins et al. (1994, JASA) propose a new class of
consistent semi-parametric estimators when the data
are missing at random

« Chen, Hong, Tarozzi (2008, AoS) derive semi-parametric
efficiency bounds for missing-data models defined by
unconditional moment restrictions

- Graham (2011, Ecta) introduces the equivalence result
for unconditional moment restrictions

« Hristache and Patilea (2016, ET; 2017, Biometrika) extend
the equivalence result to conditional moment
restrictions
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Conditional-moment-restriction models

The models of interest are defined by a conditional moment
restriction:

36*: E[g(Y*,Z,X,6%) | X] =0

- Earning equation (Mincer)
logwage® = a + yeduc + U
E[log wage® — a — yeduc | parent_educ] =0

- CEO succession in family firms (Bennedsen et al., 2007)

U
Elperf — o — B'X;qustry — ¥ fam_succ® | boy_1°t, X

perf = a +yfam_succ* + [3’Xindustry +

industry] =0
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Missing data

In the target population model,
E[g(Y*,Z,X,0%) | X]=0
- Y* contains endogenous variables (outcome or
explanatory) that are not observed for some units

« Zand X are vectors of always observed endogenous and
exogenous variables respectively

At the observational level (in the realised sub-population):
Y:=DY*+(1—-D)m,

where D = 1 if all coordinates of Y* are observed

(0 otherwise) and m is a symbol for missing values

(e.g. ‘=999, ‘NA) * in packages and survey codebooks).
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Estimation objective

Z XD 14
266 034 1 3.50 « Using observations
1.94 037 1 2.12 (Y, D, X;, Z,)i-q, efficiently
1.05 038 0 m : s
—-0.98 0.38 1 -0.52 estimate
0.91 0.38 0 m + A data set example can be
192 0390 m seen on the right
415 0.50 1 5.06
1.42 057 1 2.36 « Call the subsample with
i-gg 8-23 3 3.35 D = 1 the validation
. . m
~0.48 0.66 1 —0.28 sample
0

1.18 0.69
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Estimation objective

Z XD Y
2.66 034 1 3.50
194 037 1 212
1.05 0.38 0 m

-0.98 0.38 1 -0.52
0.91 0.38 0 m
192 039 0 m
4.15 050 1 5.06
1.42 057 1 2.36
239 063 1 3.35
1.59 0.65 0O m

-0.48 0.66 1 -0.28

0

1.18 0.69

« Using observations
(Y, D, X, Z))i-q, efficiently
estimate 6*

« A data set example can be
seen on the right

« Call the subsample with
D = 1 the validation
sample
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Practical application

Angrist & Evans (1998, AER): female labour supply model.
Y* = a+X{nqB + V- MOREKIDS + U, E(U | X, , X

excl)

=0

« Y*: labour income of a working mother
- Endogenous: MOREKIDS : = I(mother has > 3 kids)
* X, age, age at first birth, sex of the first child
* Xyt I(two boys), I(two girls)
Data: 1990 PUMS sub-sample of n = 260 286 white females.

Question: What if income is not always reported?
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Counterfactual exercise

1. We induce missingness of various strength (1-40%) in
labour income (Y*)

2. We estimate a model of female labour supply using
2 methods: 2SLS (original) and the proposed method

« How robust is the original model to the presence of
missing observations?

« Can our methodology be used to address the issue of
missingness in a useful manner?
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Practical findings

- 260 000 observations with 40% missing outcomes may
be not enough to find a significant effect of having more
than 2 children on female labour income

- Case-wise deletion (default option in software) leaves
150 000 observations

+ At the 10%, 5%, 1% level, the coefficient on MOREKIDS seems
insignificant in 62%, 70%, and 99% simulations respectively

« Our method produces more reliable and accurate
estimates

+ At the 10%, 5%, 1% level, the coefficient on MOREKIDS seems
insignificant in 1%, 22%, and 30% simulations respectively

« Findings are stable for a wide range of internal tweaking
parameters (bandwidths, kernel, smoother degree)
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Standard errors in the practical application
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Missingness mechanism

Assume the missing-at-random (MAR) mechanism:

DLY*|X,2Z

It is a form of selection on observables:

P(D=1]|Y*X,2)=P(D=1]X,2)

The probability of retention in the sample only depends on
the observable X and Z.
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Example: IV reg. with missing outcomes

Let X = (X.. ., X

incl’ excl)'

Target model: Y* = a* + X{,(B* +Z'y*+ U, E[U|X]=0.
Selection model: D =m(Z,X)+V, E[V|ZX]=0.
DIY*|ZX

= [m(Z,X)+ V] L [a*+ X, B*+Z'y*+U]| Z,X
S VILU|ZX
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MAR properties

« One do not need to specify the selection equation
« As opposed to Heckman-like or
selection-on-unobservables missingness mechanisms
« Consistent with the semi-parametric framework

« No parametric assumptions about the distribution of the
innovations U required

« One can use the entire sample to increase the efficiency
of the estimator

« In the observation equation, one may include
endogenous variables where the source of endogeneity
is different from the selection process

Drawback: not testable.
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Identification in the presence
of missing observations



Equivalence result: Graham 11, H&P 16

Under MAR, the model in the target population
E[g(Y*,Z,X,6) |[X]=0, DL Y"|XZ
is equivalent to the one in the realised sub-population

g(Y,Z, X, 6%) x] 0 (1)

o)

[E[rr(X,Z) ~1 |z,x]=0 (2)

(2) defines the propensity score (X, Z2) := E(D | X, 2).

- (X, Z) is estimated non-parametrically, even if it is
parametrically specified or it is fully known
« The larger conditioning set in (2) enables efficiency gains
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Efficiency bound

Following Ai & Chen (2003, 2012), we provide the efficiency
bound implied by the model E[p(Y,Z,X,0%) | X]=0

D D
(X, 2) (X, Z2)

p(x,z,0*):= E[g(Y*, Z,X,0%) | X,Z] is the non-parametric
imputation of g (under MAR, p = E[g(Y,Z,X,0%) | X,Z,D = 1].

L.b.(B%):= ([E/'Q-U)—1

p(Y,Z,X,0%) := g(Y,Z,X,0%) + (1 _ )u(x, Z,6%)

[E[p | X] =Jacobian of the moment function,

J:=
36"
= [E[Dr’r;f | X] — ETE[up’ | X] = variance of the mom. fun.
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Results so far

1. According to the selection mechanism, estimation only
on the validation sample may not deliver consistent
estimates
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Why efficiency is important

If only the validation sample is used, the confidence
intervals (even although asymptotically valid) may be
unbounded in finite samples.

Example: simple linear regression, 1 endogenous variable,
1instrument, n = 500, 36% missingness rate. Confidence
interval for the slope:




Efficiency and confidence intervals

ELR statistic for the slope value: VS only, full-sample.
Dashed: Wald statistic for the slope value.




Imputation without endogenous variables

Y=B,+B,X+U, EUI|X)=0
Y
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Imputation without endogenous variables

Y=B,+B,X+U, EUI|X)=0
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Imputation without endogenous variables

Y=B,+B,X+U, EUI|X)=0
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Imputation without endogenous variables

Y = By+BX+U, E(U|X)=0, Y, =DY+(1-D)E(Y |X,D=1)
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Imputation with endogenous variables

Y =y,+y,Z+U, Z=0+{X+V, E(U|X)=0, EU|X,2)#0

12
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Imputation with endogenous variables

Y =y,+y,Z+U, Z=0+{X+V, E(U|X)=0, EU|X,2)#0
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Imputation with endogenous variables

Y =yyry,Z+U, Z=+X+V, EU|X)=0, EU|X,Z)#0
Yimp= DY + (1 = D)E(Y | X,Z,D = 1)
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Imputation with endogenous variables

Y =yy+y,Z+U, Z=0+{X+V, E(U|X)=0, EU|X,2)#0

12

Yimp= DY + (1

~D)E(Y | X,Z,D = 1)
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Results so far

1. According to the selection mechanism, estimation only
on the validation sample may not deliver consistent
estimates

2. To have efficiency gains, one needs a larger conditioning
set for the propensity score than for the conditional
moment restriction of the model
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p for efficient estimation of a linear model

Y*=a,+y,Z+U, EU]|X)=0 (MAR)
EEIP
[E[n(x,z) -1 | Z'X] =0

p(x, z, Aor YQ) = E[Y - Oy — VOZ | X,Z]

D
(X, Z)(Y_ G = Vo2) * [1 - n(X,2)

p= JELY = By - voZ 1 X,2]

n(X,Z) and p(X,Z,a,,Y,) are estimated non-parametrically
via kernel methods (Nadaraya-Watson, LOESS).
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Double robustness against misspecification

D
p=g+(=—1)g-p)
mand p are unknown functions that must be estimated

non-parametrically (i, ).

However, a researcher may use easier parametric estimators
ft and [i instead of ft and fi, with misspecification error

‘noise’ = (g - 1)([1 - )

Double robustness: 6 is consistently estimable when
either the selection model for D (defining r(Z, X)) or the
model for imputing g (defining 1(X, Z,6%)) is correctly
specified (because then, E(‘noise’ | Z,X) = 0).
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Results so far

1. According to the selection mechanism, estimation only
on the validation sample may not deliver consistent
estimates

2. To have efficiency gains, one needs a larger conditioning
set for the propensity score than for the conditional
moment restriction of the model

3. The efficient moment condition uses non-parametric
imputation for observations even without missingness
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Efficient estimation and inference
under missingness at random



Smooth empirical likelihood (SEL)

(S)EL is a non-parametric method for testing and
estimating (Owen, 1988; Kitamura, Tripathi, Ahn, 2004)

+ EL estimators based on unconditional moment
restrictions are equivalent to optimally weighted GMM
estimators

« SEL imposes a conditional moment restriction on the
parameters and data

« Parametric restrictions can be tested using a
nonparametric version of Wilk's theorem (Qin & Lawless,
1994)
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SEL problem

Take any conditional-moment-restriction model
E[h(A,8) | X] =0

(A, X): generic vector of data, {(Ai,Xi)}?=1: a random sample.

K(X;-X;)

ij - T K(X=X,)"
discrete distribution {p,-j} to enforce the sample analogue of

the restriction above (hj(e) := h(A;, 0)):

n n n M
. p =1 V[ = 1’
max w;. logp.: sit. J=1 710
22 W;logp; " opph(€)=0 Vi=Tn

Given kernel weights w;; find the optimal

S
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Estimation with SEL

For any 6, the solution to the optimisation problem above is

w..
N i
0 ]

Pi0)= +Aj(O)h,(6)’

where 7\[ are the Lagrange multipliers for Z}f’ﬂ p,.jhj(e) = 0.

Define the value function SEL(6) := . _, [ij'=1 w;; log [5,-]-(6)].
SEL estimation algorithm:

1. Find A,(6) (n concave 1-dimensional problems)

2. Compute f),.j(e) and SEL(6)

3. Find 6 := arg max, SEL(6)
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Inference with SEL

- Asymptotic normality: /n(8 — 6*) ~ #0, V)
« Asymptotic efficiency: V = 1.b.(6%)

 Hypothesis testing: for a parametric restriction

Fy: R(0) = 0, find 6, := arg max SEL(6). Then, the SELR
6: R(6)=0

statistic 2[SEL(6 ) SEL( )] is asymptotically xd,mR

« a% confidence regions: invert the SELR statistic, find
{6: SELR(P) < Q 2 .(a%)}

- Standard errors: SE(69)) = \/dlag[ V2 (0)]
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SEL and sieve minimum distance (SMD)

Ai & Chen (2003) proposed the SMD estimator:
m(0) := E[p(6) | X],  Q(B) :=Var[p(6) | X]

minimise the continuous updating objective:

n
6 := argmin % m! ()7 (8)m.(6)
6 i=1
In large samples, 8 = 6, but
- SEL6 skips the difficult variance estimation (‘explicit
studentisation’)
« SELR is internally studentised and implicitly pivotal

29 /39



Visualisation of OLS, SMD, and SEL

[Animation.]
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Roadmap for efficient estimation

1. Assume missingness at random for a
conditional-moment-restriction problem

2. Re-write the problem in (1) as two sequential moment
conditions on the observed values

3. Orthogonalise the two functions appearing in the
moments of (2), obtain a single CMR based on p

4. Using SEL on E[p(B) | X] = 0, obtain efficient estimates
of 6
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Simulation study



Simulation results (design 1, discrete)

Missingness only in Y*, one discrete endogenous variable Z,
one discrete excluded instrument X, exogenous selection.

, 16, X =0,
Y*=1+1.Z+Uo(X), E(U | X) =0, O(X)=1 o

: 0.25, X =0,
X ~ Bernoulli(0.6), Z=1(X+V >0), m(X) =
09, X-=1,

U y 0\ (11 N strong endogeneity
Vv 0/"\1 2 (OLS slope bias 179%)

Missingness rate: 36%, max. gains: 31%.
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Monte-Carlo simulation summary (design 1)

10 000 simulations for each n. Theoretical gains: 31%.
Slope estimator statistics are reported.
VS: validation sample only, FS: full-sample efficient.

Var(Vs)

MSE(VS)

n Est. Med. bias Mean bias SD Var(F)  MSEG)
500 VS o35 _o6os 505 625 633
1000 S 000k 0229 180 67 169
2000\ Q015  _oos1 118 49 149
“000 S G022 o036 o076 139 139
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Confidence intervals for the slope (design 1)

Coverage probability

n  Estimator Nominal Empirical Med. length

% bounded

900 905 6.66 100
S 950 952 8.17 100

500 990 991 1151 100.0
900 897 8.43 969

Vs 950 949 10.77 94.1

990 990 16.67 84.2

900 904 2.24 100

S 950 957 2.68 100

4000 990 991 3.55 100
900 903 2.59 100

Vs 950 948 311 100

990 991 418 100

FS = full-sample (efficient), VS = validation-sample only (D = 1).
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Simulation results (design 2, continuous)

Missingness only in Y*, one endogenous variable Z, one
excluded instrument X.

Y*=1+1-Z+Ua(X), E(U | X) =0,

X ~ Uniform|[0, 1], Z=1+X+V,

m(X) = 0.25 + o.7cp(%), o2(X) = 1/15+ (X + 1/3)?,

U\ P 0\ (1 1 N strong endogeneity
1% 0/'\1 2 (OLS slope bias 42%)
®(-) is the standard normal CDF (sigmoid).

Missingness rate: 58%, max. gains: 42%.
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Monte-Carlo simulation summary (design 2)

10 000 simulations for each n. Theoretical gains: 42%.
Slope estimator statistics are reported.

VS: validation sample only, FS: full sample, efficient.

Var(Vs)

MSE(VS)

n Est. Med. bias Mean bias SD VarFS)  MSE(S)
0TS W e
%S o5 ooul o1 M L
8 001 o017 oale M43 L4
S o001 ooos oop7 44 145
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Confidence intervals for the slope (design 2)

Coverage probability

n  Estimator Nominal Empirical Med. length % bounded

.900 916 .646 100
FS .950 .968 .828 100
500 .990 995 1.354 99.6
.900 920 .698 100
VS .950 970 943 100.0
990 995 1.820 93.9
.900 913 219 100
FS .950 .957 .264 100
4000 990 993 353 100
.900 912 .258 100
FS .950 955 313 100
990 994 429 100

FS = full-sample (efficient), VS = validation-sample only (D = 1).
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Further developments

« Show that the first-step estimators do not affect the
asymptotic variance of the estimator (Ai & Chen 2003,
sieve-estimator approach)

« An approach to handle missing exogenous regressors

« Much harder problem due to X being in the
structural-model conditioning set

« Develop an optimal bandwidth-selection rule or a
convenient rule of thumb for (1) SEL weights, (2) f, (3) 7t

 Upload an R package for SEL estimation with missing
data to CRAN, implement parallel capabilities for faster
optimisation

- A package for quick and accurate gradients is in the making
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Conclusions

- We show that if at least one of endogenous variables in
the model contains missing values + not all endogenous
variables are missing, then, there are efficiency gains
compared to the classical complete-case approach

« We derive the efficiency bound and propose an
estimator that attains it

« We test its performance in practice and find that it yields
empirical gains close to theoretically expected ones

« We apply the estimator to a real data set with introduced
missingness and find that confidence intervals based on
the efficient estimator are tighter than those of 2SLS
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Thank you for your attention!

Now it is time for your questions.



Missingness mechanism - |

Let X = (X'ncl'Xexcl)'

i
Y =a*+ X B*+Z'y*+U (Target model)
D=m(Z,X)+V, (Selection model)
where E[U | X]=0,and E[V | Z,X] =0, so that
DL Y*|ZXe [M(ZX)+VIL[o*+ X{no B+ Z'y*+ U] | Z,X
e VIU]|ZX.



Missing mechanism - li

This is different from selection on unobservables, where the
P(D=1]Y*X,W)=zP(D-=1]|X,W),as in the following
example with both X and W exogenous:
Y*=a+BX+U,
D=6y+6,X+86,W+V, VIU|XW,
D =1(D = 0),
Then, even conditioning on (X, W, Y*, D) would be

dependent through the joint distribution of (U, V), as in the
Heckman selection model:

E(Y | X,W,D=1)=a+BX+EU | V>-6,—8X—5,W)



Efficiency bound for 6 in a CMR model

The semi-parametric efficiency bound for estimating 6 in a
conditional-moment-restriction model (Chamberlain, 1987)

E(h(Y,Z,X,0) | X] =0,

Lb.(6) := (E/' (X)V"(X)N(X) ",
where

J(X) :=69[E[h(Y,Z,X, 0) | X],

V(X) :=E[h(Y,Z,X,8)h'(Y,Z,X,0) | X].



Understanding p

p(Y,Z,X, 0%
= g(Yr Z,X, 6*) + (% - 1)[g(Y721X1 9*) - IJ(Z'X; e*)]
:=9g(Y,Z,X,6%) + (Y, Z,X, 6%),
where E[¢(Y,Z,X,0) | X] =0 for all 6 and
E[g(Y,Z,X,0%)p(Y,Z,X,0%)] = 0.
@ is an uninformative penalty to g for not observing all
data. Among all functions w(X, Z, 6*), g minimises the
2

penalty variance [E[(% ~1)(g-y)| X] .

E[dgn(Y,Z,X, 6%) | X]"" E[349(Y*,Z,X,6%) | X]

E[3, ,0(Y,Z,X,6%) | X]= 0



Bounds for different moment conditions

Function Bound for estimating 6*
g(Y*,X,Z,6%) (E(d,9 | X)'(Elgg’ | X1 "E(d,9g | X))
= ()'(Elgg’ | X)),
259(Y,X,2,67) (7 (B[22 | X)), )”
( ([E[Dgg | X) U)

J isa‘noisy’ version of Jdue tom

p(Y,X,Z,6) (' (Elop’ | X))
= (/' (E12E- | X~ L))
< (1 (e | X))

In the bound associated with p, J appears instead of 7
because [E[an,“p(Y,Z,X, 6*) | X]=0.



Empirical likelihood (EL)

Empirical likelihood solves the problem:

n n
max Z logp; —A Z(piX,- —u)—-v
p‘]r-'-lpnyA’v I=1 l=1

where p is the mean imposed on the data.

1

n
(pi - 1)1
=1

Solution:

g = Xi—H .1 1
A solves Z — =0, pi=——F7.
(numerically) = 1+ /\(X,- — ) nq+ A(X,- - 1)
A # 0 gives the ‘distortion’ of the probabilities 1/n to satisfy

the moment condition 3. p.X; = p.



EL as objective function

Assume 3p: E[h(X, py)] = 0, e.g. h(X,u) = X —p,

n n n
i = o h(X. u) — 1
fi = argmax pg;ﬁgm;logp, /\; (X;, 1) v;p, ]
L v - - -

[ n
= argmax |max — Z log(1 + Ah(X;, u))
L | i=1

y log(%) A

0.12 —03297 0267
IR 024 —0.0816 0.142
FHo) = TTiZy P; 036 -0.0004 —0.011
0.48 —01167 —0.185

0.60 —04442 —0.359



Empirical likelihood summary

- EL is a nonparametric method for testing and estimating
(Owen, 1988)

« EL ‘imposes’ a moment restriction on the parameters
and data

» EL based on unconditional moment restrictions are
equivalent to optimally weighted GMM

« Parametric restrictions can be tested using a
nonparametric version of Wilk's theorem (Qin & Lawless,
1994):

d 2
ELR := =2 10g(%(Uy)) = Xdim Ho

+ ELR statistics do not need to be studentised



Smooth empirical likelihood (SEL)

(A, X): generic vector of data, {(A,.,X,-)},f’ﬂ: random sample.
Kitamura, Tripathi & Ahn (2004): for a model defined by a
conditional moment restriction E[h(A, 8) | X] = 0, carry out
EL for each conditioning X;, smooth to obtain f)ij:

1

PA | X .= N.. = W..A—
(] l) p[] U,l +A,'h(Aj,9)

. KX, —X)
with w;; = =2,
R Zk:1 b( i~ k)

O, solves the problem

n n n n
meaxz ZWU logp; = mgx[—ZmAaxz w;; log(1 +Aih(A;, 0))
i=1 T j=1

i=1 j=1 i

where K(-) is a 2"4-order kernel and



Empirical-likelihood-ratio conf. intervals

Let R(uy) :=TI", np. Then,

ELR := —2log R(1y) > x2)-

ELR test: reject %#: p = y, at the a level if
ELR>Q2 (1-a).

Xdlmuo

In the example above, y, = 0, ELR(0) = 1.43, QX5(0.95) = 3.84
- do not reject #,,.



EL and estimating equations

Qin and Lawless (1994): given a model defined by estimating
equations expressed as unconditional moment conditions
E[h(A, B8)] = 0, where A: generic vector of data, {Ai}?=1:
random sample, an estimator 6 is given by

n
0=ar max[max lo ]
g max|m: Z gp;
n
=argmax|max— » log(1+A’h(A;, 6 ]
gmax|max—3_log(1+ X4, 6)

Under suitable regularity conditions,

Jn(@-0) 5 N(O,V), V =[E@gh) (Eh') " E@,h)]"



Efficiency of SEL

Why is the SEL estimator semiparametrically efficient?

—1VQSEL(6)\/_ 6-0,) ZB +0,(1)

where

n ’ n
B, = (Z W,‘jaeg(Aj, 60)) V(Aiy 60)—1(2 W’}g(Al' 90))
j=1 j=1
V(A 6,) Zwug g(A;, 6,)

_lvesm 8) = (B (X)V="(X)(X))



Estimator distribution

The smoothed density of the centred slope estimator (solid
for VS, dashed for FS efficient) is shown below.

6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6 6 -4 -2 0 2 4 6

n =500 n =2000 n = 8000

The full-sample estimator is more tightly concentrated around
the true value, has thinner tails, and looks Gaussian.



Application: conf. intervals (MOREKIDS)
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