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Motivation and empirical applications



Contribution

I extend the existing software ecosystem and
numerical-methods literature by:

1. Creating an open-source R package for fast,
parallelised numerical differentiation
• First open-source parallel Jacobians, Hessians and
higher-order-accurate gradients

2. Deriving analytical error bounds and optimal step-size
rules for higher-order-accurate derivatives and
second-order-accurate Hessians

3. Implementing previously proposed algorithms of
step-size estimation, benchmarking their relative
performance, and suggesting improved modifications
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Motivation and research question

• Researchers rely on optimisers, algorithms, black boxes
etc. to ‘solve’ their models and carry out inference

• The end result is highly dependent on the solver quality
• Most popular modern optimisation techniques use
numerical derivatives for minimisation or maximisation

However, most software implementation yield inaccurate
and slow numerical derivatives.

How can we attain the hardware-dependent
accuracy bound for numerical derivatives?
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Consequences of inaccurate derivatives

• Inexact solutions, values not at the optimum
• Wrong asymptotic-approximation-based inference
• Wrong standard errors and 𝑝 values in non-linear models

• Worst case: negative Hessian-based variances
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Example from a financial application

Simple AR(1)-GARCH(1, 1) model for NASDAQ log-returns,
1990–1994:

𝑟𝑡 = 𝜇 + 𝜌𝑟𝑡−1 + 𝜎𝑡𝑈𝑡, 𝜎2𝑡 = 𝜔 + 𝛼𝑈
2
𝑡−1 + 𝛽𝜎

2
𝑡−1

Coefficient Est. 𝑡-stat 𝑡-stat 𝑡-stat
(rugarch) (fGarch) (manual)

𝜇 0.0007 2.34 2.31 2.33
𝜌 0.24 7.77 7.73 7.73
𝜔 × 103 0.0098 NaN

default
or 65
fallback

3.09 3.08
𝛼 0.13 11.1 4.27 4.26
𝛽 0.73 39.6 10.9 11.0

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28 4 / 69



Gradients, Jacobians, Hessians in economics

• Gradient: marginal effects and causal interpretation
• It is common to numerically estimate the response of 𝑌 to
a small change 𝑋 in large systems of interdependent
equations

• Hessian: standard errors in semi-parametric and
parametric models (non-linear least squares, GMM,
maximum likelihood: probit, logit, heckit…)

• Jacobian: must be supplied in constrained-optimisation
problems (optimisation subject to 𝑔(𝜃) = 0, ℎ(𝜃) ≥ 0)

• Numerical optimisation with steepest-descent /
hill-climbing methods

Necessary in any model that is not linear in parameters.
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You have encountered numerical algorithms
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Existing literature / software

• Gerber & Furrer (2019). optimParallel: An R Package
Providing a Parallel Version of the L-BFGS-B
Optimization Method. The R Journal 11 (1).
cran.r-project.org/package=optimParallel
• Limited to the built-in
optim(..., method = "L-BFGS-B")

• Textbooks on linear algebra, calculus, and numerical
analysis

• Papers on computer algorithms from the 1970s
• Hong, Mahajan & Nekipelov, (2015, JoE). Extremum
estimation and numerical derivatives.
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Non-existent literature / software

• Most modern articles focus on ultra-high-dimensional
numerical gradients with much fewer evaluations
• Only one (!) paper (Mathur 2012, Ph. D. thesis) with a
comprehensive treatment of the classical case useful for
low-dimensional models

• Existing algorithms (Curtis & Reid 1974, Dumontet &
Vignes 1977, Stepleman & Winarsky 1979) lack
open-source implementations
• Popular software packages implement very rough rules
and do not refer to any optimality results in the literature

• Most implementations of higher-order and
cross-derivatives are through repeated differencing
• Slower and less accurate than the best solution
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Partial solutions

• R packages numDeriv and optimParallel
• numDeriv: the most full-featured arsenal in terms of
accuracy, but slow; optimParallel: speed gains but no
focus on accuracy

• Python’s numdifftools
• Discusses Richardson extrapolation; no error analysis

• MATLAB’s Optimisation Toolbox
• Focuses on parallel evaluation, not accuracy

• Stata’s deriv
• Implements a step-size search to obtain 8 accurate digits
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Derivatives in linear models

FUELSALES = 𝛽0 + 𝛽1PLux + 𝛽2Pabroad
+ 𝛽3COMMUTERS + 𝛽4LOCKDOWN + 𝑈

• Exogeneity assumption:
𝔼(𝑈 ∣ PLux, Pabroad, COMMUTERS, LOCKDOWN) = 0

• ∂
∂Pabroad

𝔼[FUELSALES ∣ PLux, Pabroad,…] = 𝛽2 by exogeneity

• Causal interpretation: if the foreign fuel price changes
by 1 €, fuel sales will change by 𝛽2 units ceteris paribus
(including 𝑈)
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Derivatives in non-linear models

Economic vulnerability model for women over 50:
𝑌∗ = 𝛼0 + 𝛾1EducYears + 𝛾2𝑁𝑜𝑛𝑊ℎ𝑖𝑡𝑒

+ 𝛾3EducYears × NonWhite + 𝑋
′𝛽0 + 𝑈 : = ̃𝑋′𝜃0 + 𝑈

𝑌 : = {1, 𝑌∗ > 0,
0, 𝑌∗ ≤ 0,

ℙ(𝑌 = 1 ∣ ̃𝑋) = 𝐹𝑈( ̃𝑋′𝜃0), 𝑈 ∼ 𝒩, Λ,…

∂ℙ(𝑌 = 1 ∣ ̃𝑋)
∂EducYears

= 𝑓𝑈( ̃𝑋′𝜃0) ⋅ (𝛾1 + 𝛾3 NonWhite)

∂ℙ(𝑌 = 1 ∣ ̃𝑋)
∂NonWhite

= 𝑓𝑈( ̃𝑋′𝜃0) ⋅ (𝛾2 + 𝛾3 EducYears)

Inference on 𝛾3 is not intuitive.
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Inference in non-linear models

Policy-makers are interested in the effects due to changes
in explanatory variables, not parameters.

Average partial effect of the 𝑘th variable: 𝔼 ∂
∂𝑋(𝑘)

ℙ(𝑌 = 1 ∣ ̃𝑋).

Its straightforward estimator is 1
𝑛 ∑

𝑛
𝑖=1

∂
∂𝑋(𝑘)

ℙ̂(𝑌𝑖 = 1 ∣ ̃𝑋𝑖).

Embarrassingly parallel task: a problem that can be split
into smaller problems that can be solved in parallel with
no communication between the processes.

• Computing the 𝑛-dimensional derivative vector
{ ∂
∂𝑋

(𝑘)
𝑖

ℙ̂(𝑌𝑖 = 1 ∣ ̃𝑋𝑖)}
𝑛
𝑖=1

is embarrassingly parallel

• Inference on 𝜃0 based on the Hessian of the
log-likelihood is embarrassingly parallel
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Complications in non-linear models

• 𝐹𝑈 is often confined to a specific family (Poisson,
exponential, Gaussian, logistic etc.)
• This parametric assumption could be wrong
• A more flexible approximation of the true distribution
of 𝑈 may not have a manageable closed-form derivative

• Most data-generating process in economics are highly
non-linear and hard-to-formalise
• Non-linear high-dimensional models tend to have a better
explanatory power and yield more accurate forecasts

• Loss of parameter interpretability
• Numerical derivatives are often the only solution
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Approximations of analytical derivatives



Derivative of a function

Derivative: The instantaneous rate of change of a function.

𝑓′(𝑥) =
d𝑓
d𝑥

: = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

Assume that 𝑓 is differentiable and
therefore continuous.
𝑓′(𝑥) is the slope of the tangent line
to the graph at 𝑥.
Illustration: 𝑓(𝑥) : = 𝑥3, 𝑓′(𝑥) = 3𝑥2.
𝑓(1) = 1, 𝑓′(1) = 3. The tangent
equation at 𝑥 = 1 is 3𝑥 − 2.

xs

f(
xs

)
f(x)

f′(x)

tan(α) = 3
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Naïve numerical derivatives

In the definition

𝑓′(𝑥) : = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

,

remove the limit to obtain a forward difference:

𝑓′
FD(𝑥, ℎ) : =

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

Choose a sequence of decreasing step sizes ℎ𝑖 (e. g.
{0.1, 0.01, 0.001,…}), observe the sequence
𝑓′
FD(𝑥, 0.1), 𝑓

′
FD(𝑥, 0.01), 𝑓

′
FD(𝑥, 0.001),… converge to 𝑓′.

We revisit this expression in Slide 25.

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28 15 / 69



Naïve numerical derivatives in practice

Mathematically, 𝑓′
FD(𝑥, 0.1), 𝑓

′
FD(𝑥, 0.01), 𝑓

′
FD(𝑥, 0.001),…

converges to 𝑓′(𝑥).

F
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ff.
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Naïve numerical derivatives in practice
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Naïve numerical derivatives in practice

Mathematically, 𝑓′
FD(𝑥, 0.1), 𝑓

′
FD(𝑥, 0.01), 𝑓

′
FD(𝑥, 0.001),…

converges to 𝑓′(𝑥). But not true in practice!
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Gradient of a function

Gradient: column vector of partial derivatives of a
differentiable scalar function.

∇𝑓(𝑥) : = (

∂𝑓
∂𝑥(1)

(𝑥)
⋮

∂𝑓
∂𝑥(𝑑)

(𝑥)
)

• Vector input 𝑥 + scalar output 𝑓 = vector ∇
• At any point 𝑥, the gradient – the 𝑑-dimensional slope –
is the direction and rate of the steepest growth of 𝑓

‘A source of anxiety for non-mathematics students.’
J. Nash, ‘Nonlinear Parameter Optimization’ (2014).
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Visualisation of a gradient



Jacobian of a function

Jacobian: Matrix of gradients for a vector-valued
function 𝑓.
If dim𝑥 = 𝑑, dim𝑓 = 𝑘,

∇𝑓(𝑥) : = ( ∂𝑓
∂𝑥(1)

(𝑥) ⋯ ∂𝑓
∂𝑥(𝑑)

(𝑥))
𝑘×𝑑

= (
∇𝑇𝑓 (1)(𝑥)

⋮
∇𝑇𝑓 (𝑘)(𝑥)

)

𝑘×𝑑

• Vector input 𝑥 + vector output 𝑓 = matrix ∇
• In constrained problems, most solvers (e. g. NLopt) for
min𝑥 𝑓(𝑥) s. t. 𝑔(𝑥) = 0 require an explicit ∇𝑔(𝑥)
Including incorrectly computed derivatives (mostly
gradients or Jacobian matrices) <...> explains almost
all the ‘failures’ of optimisation codes I see. (Idem.)
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Hessian of a function

Hessian: Square matrix of second-order partial derivatives
of a twice-differentiable scalar function.

∇2𝑓(𝑥) : = {
∂2𝑓

∂𝑥(𝑖)∂𝑥(𝑗)
}
𝑑

𝑖,𝑗=1
= (

∂2𝑓
∂𝑥(1)∂𝑥(1)

⋯ ∂2𝑓
∂𝑥(1)∂𝑥(𝑑)

⋮ ⋱ ⋮
∂2𝑓

∂𝑥(𝑑)∂𝑥(1)
⋯ ∂2𝑓

∂𝑥(𝑑)∂𝑥(𝑑)

) (𝑥)

The Hessian is the transpose Jacobian of the gradient:

∇2𝑓(𝑥) = ∇𝑇[∇𝑓(𝑥)]

• Vector input 𝑥 + scalar output 𝑓 = matrix ∇2

• If ∇𝑓 is differentiable, ∇2𝑓 is symmetric
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Taylor series

𝑓(𝑥 ± ℎ) =
∞

∑
𝑖=0

1
𝑖!
d𝑖

d𝑥𝑖
𝑓(𝑥) ⋅ (±ℎ)𝑖

= 𝑓(𝑥) ± 𝑓′(𝑥)
1! ℎ +

𝑓″(𝑥)
2! ℎ

2 ± 𝑓‴(𝑥)
3! ℎ

3 +…

The 𝑎th-order approximation of 𝑓 at 𝑥 is a polynomial of
degree 𝑎. The discrepancy between 𝑓 and its
approximation is the remainder. For some 𝛿 ∈ [0, 1],

𝑓(𝑥 ± ℎ) −
𝑎

∑
𝑖=0

1
𝑖!
𝑑𝑖𝑓(𝑥)
𝑑𝑥𝑖

(±ℎ)𝑖 =
𝑓 (𝑎+1)(𝑥 ± 𝛿ℎ)
(𝑎 + 1)!

(±ℎ)𝑎+1

For small ℎ (ℎ < 1, ℎ → 0), ℎ𝑎+1 𝑎→∞−−−−→ 0.
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Example: Taylor series for CRRA utility

Linear approximation of CRRA utility with risk aversion 𝜂:

𝑓(𝑥) = 𝑥1−𝜂

1 − 𝜂
, 𝑓′(𝑥) = 𝑥−𝜂, 𝑓″(𝑥) = −𝜂𝑥−𝜂−1, …

Assume 𝜂 = 1.5, approximate 𝑓 around 𝑥0 = 2.

𝑓(2 + ℎ) ≈ 𝑓(𝑥0) + 𝑓
′(𝑥0)ℎ = 0.59 + 0.35ℎ = 𝑃1(ℎ)

≈ 𝑃1(ℎ) +
𝑓″(𝑥0)
2! ℎ2 = 0.59 + 0.35ℎ − 0.13ℎ2 = 𝑃2(ℎ)

≈ 𝑃2(ℎ) +
𝑓‴(𝑥0)
3! ℎ3 = 0.59 + 0.35ℎ − 0.27ℎ2 + 0.06ℎ3

≈ 0.59 + 0.35ℎ − 0.27ℎ2 + 0.06ℎ3 − 0.02ℎ4 ≈ …
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Reversing the Taylor series

• Knowing many derivative values allows one to
approximate the function

• Do the opposite: use the function values to
approximate any derivative
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Derivatives through Taylor series

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝑓′(𝑥)ℎ +
𝑓″(𝑥 + 𝛼ℎ)

2
ℎ2, 𝛼 ∈ [0, 1]

Subtract 𝑓(𝑥) and divide by ℎ:
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
= 𝑓′(𝑥) +

𝑓″(𝑥 + 𝛼ℎ)
2

ℎ = 𝑓′(𝑥) + 𝑂(ℎ)

Therefore, assuming that 𝑓″(𝑥) is uniformly bounded∗,
𝑓′(𝑥) = 𝑓′

FD(𝑥, ℎ) + 𝑂(ℎ) ≈ 𝑓
′
FD(𝑥, ℎ) +

𝑓″(𝑥)
2 ℎ (for small ℎ), and

𝑓′
FD(𝑥, ℎ) is first-order-accurate.

This is the naïve approximation from Slide 15!
∗ ∃𝑀 > 0: sup

𝑥
|𝑓″(𝑥 + 𝛼ℎ)| ≤ 𝑀 < ∞.
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Symmetrical differences

To improve the accuracy, consider expansions at 𝑥 ± ℎ:

𝑓(𝑥 +ℎ) = 𝑓(𝑥) +𝑓′(𝑥)ℎ +
𝑓″(𝑥)
2

ℎ2 +
𝑓‴(𝑥 + 𝛽1ℎ)

6
ℎ3, 𝛽1 ∈ [0, 1]

𝑓(𝑥−ℎ) = 𝑓(𝑥)−𝑓′(𝑥)ℎ+
𝑓″(𝑥)
2

ℎ2−
𝑓‴(𝑥 − 𝛽2ℎ)

6
ℎ3, 𝛽2 ∈ [0, 1]

Subtract (2) from (1):

𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ) = 2𝑓′(𝑥)ℎ + 𝑓‴(𝑥+𝛽1ℎ)+𝑓
‴(𝑥+𝛽2ℎ)

6 ℎ3

Divide by 2ℎ + generalised intermediate value theorem:
𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)

2ℎ
= 𝑓′(𝑥) + 𝑓‴(𝑥+𝛽ℎ)

3 ℎ2, 𝛽 ∈ [−1, 1]
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Second-order accuracy of derivatives

Central differences are symmetrical around 𝑥:

𝑓′
CD(𝑥, ℎ) : =

𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)
2ℎ

𝑓′
CD is more accurate than 𝑓

′
FD:

∗

• 𝑓′(𝑥) − 𝑓′
FD(𝑥, ℎ) = −𝑓″(𝑥+𝛼ℎ)

2 ℎ ≈ −𝑓″(𝑥)
2 ℎ = 𝑂(ℎ)

• 𝑓′(𝑥) − 𝑓′
CD(𝑥, ℎ) = −𝑓‴(𝑥+𝛽ℎ)

6 ℎ2 ≈ −𝑓‴(𝑥)
6 ℎ2 = 𝑂(ℎ2)

If 𝑓(𝑥) has not been evaluated, computing 𝑓′
FD and 𝑓

′
CD

takes the same amount of time – use 𝑓′
CD.

If 𝑓(𝑥) is already known, CD requires 1 more computation
than 𝑓′

FD, which is 2 times slower – use 𝑓
′
FD for costly 𝑓.

∗ Assuming 𝑓″ and 𝑓‴ are uniformly bounded.
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Graphical illustration of accuracy

xs

f(
xs

)

f
True tangent

• 𝑓(𝑥) = 𝑥3, 𝑥0 = 1
• 𝑓′(𝑥0) = 3
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Graphical illustration of accuracy

xs

f(
xs

)

f
True tangent
Forward diff.

• 𝑓(𝑥) = 𝑥3, 𝑥0 = 1
• 𝑓′(𝑥0) = 3
• Step size ℎ = 0.2
• 𝑓′

FD(𝑥0, 0.2) = 3.64
Error ≈ 21%
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Graphical illustration of accuracy

xs

f(
xs

)

f
True tangent
Forward diff.
Central diff.

• 𝑓(𝑥) = 𝑥3, 𝑥0 = 1
• 𝑓′(𝑥0) = 3
• Step size ℎ = 0.2
• 𝑓′

FD(𝑥0, 0.2) = 3.64
Error ≈ 21%

• 𝑓′
CD(𝑥0, 0.2) = 3.04
Error ≈ 1.3%
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Second derivatives via central differences

𝑓″(𝑥) : = d
d𝑥
𝑓′(𝑥)

Find such a linear combination of 𝑓(𝑥 − ℎ), 𝑓(𝑥), 𝑓(𝑥 + ℎ)
that the coloured terms should cancel out:

𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝑓′(𝑥)ℎ + 𝑓″(𝑥)
2 ℎ2 + 𝑓‴(𝑥)

6 ℎ3 + 𝑓⁗(𝑥+𝛾1ℎ)
24 ℎ4

𝑓(𝑥 − ℎ) = 𝑓(𝑥) − 𝑓′(𝑥)ℎ + 𝑓″(𝑥)
2 ℎ2 − 𝑓‴(𝑥)

6 ℎ3 + 𝑓⁗(𝑥−𝛾2ℎ)
24 ℎ4

This weighted sum is the solution:

𝑓″
CD(𝑥, ℎ) : =

𝑓(𝑥 − ℎ) − 2𝑓(𝑥) + 𝑓(𝑥 + ℎ)
ℎ2
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Accuracy of second derivatives

The error order is the same as with 𝑓′
CD:

𝑓″(𝑥) − 𝑓″
CD(𝑥, ℎ) ≈ −

𝑓⁗(𝑥)
12

ℎ2 = 𝑂(ℎ2)

However, the default implementation in many software
products is repeated differences:

𝑓″(𝑥) ≈
𝑓′(𝑥 + ℎ) + 𝑓′(𝑥 − ℎ)

2ℎ
≈
𝑓′
CD(𝑥 + ℎ) + 𝑓

′
CD(𝑥 − ℎ)

2ℎ

• Approximating 𝑓″(𝑥) via a 3-term 𝑓″
CD is faster:

each 𝑓′
CD takes 2 evaluations

• More accurate with the optimal step size: the ℎ∗ that is
optimal for 𝑓′

CD is too small for 𝑓
″
CD (Slide 55)
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Higher-order accuracy of derivatives

Better accuracy is achievable with more terms in the sum.
Carefully choose the coefficients to eliminate the
undesirable terms:

𝑓′ =
−𝑓(𝑥 − ℎ) + 𝑓(𝑥 + ℎ)

2ℎ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓′
CD,2

+𝑂(ℎ2)

𝑓′ =
𝑓(𝑥 − 2ℎ) − 8𝑓(𝑥 − ℎ) + 8𝑓(𝑥 + ℎ) − 𝑓(𝑥 + 2ℎ)

12ℎ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓′
CD,4

+𝑂(ℎ4)

For the same ℎ, the error of 𝑓′
CD,4 is generally* smaller⇔

large ℎ for 𝑓′
CD,4 yields the same error as small ℎ for 𝑓

′
CD,2.
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General solution

Stencil: strictly increasing sequence of real numbers:
𝑏1 < … < 𝑏𝑛. (Preferably symmetric around 0 for the best
accuracy.) Example: 𝑏 = (−2,−1, 1, 2).

Derivatives of any order 𝑚 with error 𝑂(ℎ𝑎) may be
approximated as weighted sums of 𝑓 evaluated on the
evaluation grid for that stencil: 𝑥 + 𝑏1ℎ,… , 𝑥 + 𝑏𝑛ℎ.

With enough points (𝑛 > 𝑚), one can find such
weights {𝑤𝑖}

𝑛
𝑖=1 that yield the 𝑎th-order-accurate

approximation of 𝑓 (𝑚), where 𝑎 ≤ 𝑛 −𝑚:
d𝑚𝑓
d𝑥𝑚

(𝑥) = ℎ−𝑚
𝑛

∑
𝑖=1
𝑤𝑖𝑓(𝑥 + 𝑏𝑖ℎ) + 𝑂(ℎ

𝑎)
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Examples of stencils and weights

• 𝑓′
FD =

𝑓(𝑥+ℎ)−𝑓(𝑥)
ℎ = ℎ−1[−1 ⋅ 𝑓(𝑥 + 0ℎ) + 1 ⋅ 𝑓(𝑥 + 1ℎ)]

• Stencil: 𝑏 = (0, 1), weights: 𝑤 = (−1, 1)

• 𝑓′
CD =

𝑓(𝑥+ℎ)−𝑓(𝑥−ℎ)
2ℎ = ℎ−1[−1

2𝑓(𝑥 − ℎ) + 1
2𝑓(𝑥 + ℎ)]

• Stencil: 𝑏 = (−1, 1) (symmetric), weights: 𝑤 = (−1
2 ,

1
2 )

• 𝑓″
CD =

𝑓(𝑥−ℎ)−2𝑓(𝑥)+𝑓(𝑥+ℎ)
ℎ2

• Stencil: 𝑏 = (−1, 0, 1), weights: 𝑤 = (1,−2, 1)

• 𝑓′
CD,4 =

𝑓(𝑥−2ℎ)−8𝑓(𝑥−ℎ)+8𝑓(𝑥+ℎ)−𝑓(𝑥+2ℎ)
12ℎ

• Stencil: 𝑏 = (−2,−1, 1, 2), weights: 𝑤 = (− 1
12 ,

8
12 ,−

8
12 ,

1
12 )

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28 33 / 69



Example: finite diff. in the new R package

Use fdCoef() to obtain the coefficients that yield an
approximation of the 𝑚th derivative with error 𝑂(ℎ𝑎) on
the smallest sufficient stencil.

fdCoef(deriv.order = 2, acc.order = 4)
# $stencil: -2 -1 0 1 2
# $weights: x-2h x-1h x x+1h x+2h
# -0.08333 1.33333 -2.50000 1.33333 -0.08333

Arbitrary stencils are supported; the resulting coefficients
yield the maximum attainable accuracy:

fdCoef(deriv.order = 1, stencil = c(-1, 0, 4))$weights
# x-1h x x+4h
# -0.80 0.75 0.05 # Second-order accuracy
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Numerical Hessians via central differences

Let ℎ𝑖 : = (0 … 0 ℎ⏟
𝑖th position

0 … 0)′ and 𝑥+− : = 𝑥 + ℎ𝑖 − ℎ𝑗.

4 evaluations of 𝑓 are required to approximate ∇2𝑖𝑗𝑓 via CD:

∇2𝑖𝑗𝑓(𝑥) : = [∇𝑇(∇𝑓(𝑥))]𝑖𝑗 : = ∇
2
𝑖𝑗,CD𝑓(𝑥) + 𝑂(ℎ2) =

=
𝑓(𝑥++) − 𝑓(𝑥−+) − 𝑓(𝑥+−) + 𝑓(𝑥−−)

4ℎ2
+ 𝑂(ℎ2)

• The 4-term sum is as fast as the 4-term
∇𝑖𝑓(𝑥+ℎ𝑗)−∇𝑖𝑓(𝑥−ℎ𝑗)

2ℎ𝑗
,

but guaranteed to be symmetric: ∇̂2𝑖𝑗,CD = ∇̂
2
𝑗𝑖,CD

• Symmetric repeated differences require 8 terms

• Accuracy implications are being investigated
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Efficient parallelisation of gradients

Example: ∇𝑓(𝑥), dim𝑥 = 3, stencil 𝑏 = (−2,−1, 1, 2) for
4th-order accuracy, same step size ℎ. Total: 12 evaluations.

𝑤1 =
1
12 𝑤2 = − 8

12 𝑤3 =
8
12 𝑤4 = − 1

12
𝑥(1) 𝑓(𝑥 − 2ℎ1) 𝑓(𝑥 − ℎ1) 𝑓(𝑥 + ℎ1) 𝑓(𝑥 + 2ℎ1)
𝑥(2) 𝑓(𝑥 − 2ℎ2) 𝑓(𝑥 − ℎ2) 𝑓(𝑥 + ℎ2) 𝑓(𝑥 + 2ℎ2)
𝑥(3) 𝑓(𝑥 − 2ℎ3) 𝑓(𝑥 − ℎ3) 𝑓(𝑥 + ℎ3) 𝑓(𝑥 + 2ℎ3)

• Create a list of length 12 containing 𝑥 + 𝑏𝑗ℎ𝑖
• Apply 𝑓 in parallel to the list items, assemble
{{𝑓(𝑥 + 𝑏𝑗ℎ𝑖)}

3
𝑖=1}

4
𝑗=1

in a matrix

• Compute weighted row sums
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Error sources in numerical derivatives



Floating-point arithmetic

Computers convert inputs into 1’s and 0’s for processing.

Real numbers can be written with an integer mantissa
(=significant digits) and an integer exponent (=magnitude):

1.8125 = 18125⏟
integer
mantissa

⋅ 10⏟
base

integer
exponent

⏞−4

The number 18.125 has the same mantissa and a different
exponent (−3). To multiply by 10 (the base), move the
decimal point: 1.8125 ⋅ 10 = 18.125.

Such numbers are called floating-point numbers.
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Available precision on 64-bit machines

1 bit
sign

⏞0

11 bits
exponent

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞10000001101

52 bits
significant digits

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞1100000011010001100110011001100110011001100110011001

Computing the number from bits:

(−1)sign ⋅ (1.significand) ⋅ 2exponent−2
10+1 =

= 1.753198 ⋅ 21037−1023 = 28 724.4

• 64-bit FP numbers represent 5 ⋅ 10−324 … 2 ⋅ 10308

• Are 64-bit calculations relatively accurate up to 10−323?
No, only to 1/252 = 2.2 ⋅ 10−16!

• Precision beyond ≈16 decimal significant digits is lost
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Computers have terrible precision

• Machine epsilon (𝜖m): maximum relative step between
two representable numbers, or 𝜖m : = 2

−52 ≈ 2.2 ⋅ 10−16

• If 𝑥 = 2𝑖 for integer 𝑖, the mantissa is 52 zeros: 000…000;
when the least significant bit is flipped from 0 to 1, the
mantissa becomes 000…001, and 𝑥 ↦ (1 + 𝜖m)𝑥

• Rounding errors (e. g. if numbers have different orders
of magnitude), catastrophic cancellation, ill
conditioning (high sensitivity to small input errors)

• Input errors, user mistakes, programmer and hardware
bugs – purgamenta intrant, purgamenta exeunt
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Example: low bit rates in early software

1993, 8-bit audio,
11 025 Hz sampling

2001, 4-bit audio,
44 100 Hz sampling
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Example: 8-bit audio in the 1990s

The vertical position of the wave can take any of the
28 = 256 values; 1 point = 1 byte.

11 025 Hz = 11 kilobytes per second of audio.
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Finite precision in digital data

• The vertical position of the sound wave intensity is
digitally encoded as a number on a fixed grid:
• 4 bits⇒ 24 = 16 positions (very coarse)
• 8 bits⇒ 28 = 256 positions (coarse)
• 16 bits⇒ 216 = 65 536 positions (CD quality)

• 64-bit FP numbers use a similar grid to allow
⇒ 264 ≈ 1.8 ⋅ 1019 numbers on the entire real line
• The amount of annual Internet traffic is > 1021 bytes –
already not enough even with positive integers

• One is limited to 64 bits per number unless they use
special libraries for arbitrary-precision arithmetic at the
cost of extra memory and speed: GMP, MPFR…
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Graphical representation of FP accuracy

1 2 4 8 16

• Intervals [1, 2], [2, 4], [4, 8], … are cut into 252 ≈ 4.5 ⋅ 1015
equal intervals; all numbers are snapped to the edges

• The gap between two representable numbers is
proportional to the number magnitude
• The rounding error is proportional to the number
• Relative rounding error range: [0 … 1.1 ⋅ 10−16]

• Caution: round(3.5) = 4, but round(4.5) = 4 due to
rounding towards the nearest even number
• Worst case: the 1992 precision loss in the Patriot missile
control system⇒ 28 soldiers died to a Scud missile
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Insufficient precision example

a = 2^52 # 4 503 599 627 370 496, 1/macheps
b = a + 0.4
c = b + 0.3
d = c + 0.3
d - a # Question: is equal to what?

Answer: zero. (At least in FP64 precision.)

• The next number after 252 representable by the
machine is 252 + 1

• Everything less than 252 + 0.5 is rounded down to 252
• Sort the inputs or use Kahan’s compensated summation
to extend the precision

• But 2^52+0.3+0.3+0.3+0.3+0.3+0.3+... = 2^52!
• Max. rel. error: 𝜖m/2, max. abs. error: |𝑦| ⋅ 𝜖m/2

Quick and accurate numerical derivatives. A. V. Kostyrka, Université du Luxembourg, 2024-05-28 44 / 69



Base-conversion precision loss example

Only finite sums of integer powers of 2 up to 252 are stored
losslessly in computer memory:

1/2 = 0.510 = 0.12 – fine.

4/5 = 0.810 = 0.1100 1100…2 = 0.11002 – infinite period.

With 52 bits, one can represent only
0. [1100]⏟

×12

1100 = 0.8 − 2 ⋅ 10−16 or
0. [1100]⏟

×12

1101 = 0.8 + 4 ⋅ 10−17.

If 0.8 is saved as a number, it is read back as a different
one: print(0.8, 20) # 0.80000000000000004441.
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Real case #1: numerical derivative failure

• An economist is modelling some variable 𝑌 that is
linear in the GDP: 𝑌 : = 1 ⋅ GDP + 𝑔(…) + 𝑈
• ∂𝔼(𝑌 ∣ …)/∂GDP = 1, but they use numerical derivatives

• Lux GDP is 80 bn €⇒ the gap between two
representable numbers is 8 ⋅ 1010/252 ≈ 1.7 ⋅ 10−5

• Step size: 10−8 (from the literature)

∇GDP𝑌 |GDPLux
≈
[8 ⋅ 1010 + 10−8] − 8 ⋅ 1010

10−8

• [8 ⋅ 1010 + 10−8] = 8 ⋅ 1010 because 10−8 < 1
2 ⋅ 1.7 ⋅ 10

−5

⇒ the numerator is zero (cf. Slide 16 plot)

• Error: the computer returns ̂∂𝑌/∂GDP = 0 instead of 1!
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Real case #2: catastrophic cancellation

The causal effect of a 1-euro debt change on the
probability of self-reported good health condition (GH) in
the probit model ℙ(GH = 1 ∣ Debt,…) = Φ(𝛾0Debt +…):

∂ℙ(GH𝑖 = 1)
∂Debt𝑖

≈
Φ( ̂𝛾(Debt𝑖 + 0.001) +…) −Φ( ̂𝛾Debt𝑖 +…)

0.001

If the argument of Φ(⋅) is too large, probabilities close to 1
are predicted. If ̂𝛾 ⋅ Debt𝑖 +… = 8.3, the relative error of
∂ℙ(GH𝑖=0)
∂Debt𝑖

can be ≈ 17%.

Consequence: the error of the odds ratio is unbounded.
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Illustration of catastrophic cancellation

Evaluated odds ratio ℙ(GoodHealth𝑖=0∣Debt𝑖)
ℙ(GoodHealth𝑖=0∣Debt𝑖+change)

.
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+InfinityTrue
Evaluated

Probit breaks at 𝑋′𝛽 = 8.3; logit breaks at 𝑋′𝛽 = 36.8.
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Total error in numerical derivatives

Step size selection is critical for accuracy:

• ℎ too large→ large truncation error from the truncated
Taylor-series term (poor mathematical approximation)

• ℎ too small→ large rounding error (poor numerical
approximation): catastrophic cancellation, division of
something small by something small, machine accuracy
always limited by 𝜖m

Finding the optimal ℎ∗ to balance these two errors is
possible.
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Visualisation of the error components

10−11 10−10 10−9 10−8 10−7 10−6 10−5

0

2 ⋅ 10−6

4 ⋅ 10−6

6 ⋅ 10−6

8 ⋅ 10−6
Truncation
Rounding
Total

10−11 10−10 10−9 10−8 10−7 10−6 10−5

10−8

10−7

10−6

10−5

Step size
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Total error function properties

On the log-log scale,

• The slope of the left branch is the differentiation
order 𝑚 (times −1)
• The rounding error of the difference is divided by ℎ𝑚

• The slope of the right branch is the accuracy order 𝑎
• The truncation error is approximately 𝑓′′…/𝑎! times ℎ𝑎
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Analytical error bounds for central diff.

Computing 𝑓 results in a rounding error:

𝑓(𝑥 + ℎ) : = ̂𝑓FP64(𝑥 + ℎ) + 𝑒+, 𝑓(𝑥 − ℎ) : = ̂𝑓FP64(𝑥 − ℎ) + 𝑒−

[𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ)]
true difference

− [ ̂𝑓FP64(𝑥 + ℎ) − ̂𝑓FP64(𝑥 − ℎ)]
computer evaluation

= 𝑒+ − 𝑒−

𝑓′(𝑥) − ̂𝑓′
CD(𝑥, ℎ)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

overall num. deriv. error

≈
𝑓‴(𝑥)
6

ℎ2
⏟⏟⏟⏟⏟
truncation

+
0.5(𝑒+ − 𝑒−)

ℎ⏟⏟⏟⏟⏟⏟⏟⏟⏟
rounding

Rounding-error numerator bound:∗

|𝑒+ − 𝑒−| ≤ |𝑒+| + |𝑒−| ≤ 2max{|𝑒+|, |𝑒−|} = |𝑓(𝑥)|𝜖m
∗ 𝑓(𝑥 + ℎ), 𝑓(𝑥 − ℎ) must have the same magnitude (binary exponent).
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Optimal step size

Total-error function: conservative absolute bound (after
several harmless simplifications).

𝐸CD(𝑥, ℎ) : =
|𝑓‴(𝑥)|

6
ℎ2 + 0.5|𝑓(𝑥)|𝜖mℎ

−1

𝐸FD(𝑥, ℎ) : =
|𝑓″(𝑥)|
2

ℎ + |𝑓(𝑥)|𝜖mℎ
−1

Optimal step sizes that minimise it:

ℎ∗
CD =

3

√
1.5|𝑓(𝑥)|
|𝑓‴(𝑥)|

𝜖m, ℎ∗
FD = √

2|𝑓(𝑥)|
|𝑓″(𝑥)|

𝜖m

Therefore, ℎ∗
CD ∝ 𝜖

1/3
m and ℎ∗

FD ∝ 𝜖
1/2
m (machine-dependent).
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General step-size selection

Result: 𝑎th-order-accurate 𝑚th numerical derivatives have:

• Optimal step size ℎ∗ ∝
𝑎+𝑚√𝜖m

• Approximation error ∝ 𝜖𝑎/(𝑎+𝑚)m ∝ ℎ𝑎∗ ∝ 𝜖m/ℎ
𝑚
∗ with

equal order of truncation and rounding components
• The total error at the optimal ℎ∗ is 𝑂(𝜖1/2m ) for one-sided
and 𝑂(𝜖2/3m ) for central differences

• In 64-bit precision, 𝑓′
FD is accurate only to ≈7–8 decimal

digits, and 𝑓′
CD to ≈10–11 digits at most

• Second derivatives and Hessians: ℎ∗∗
CD ∝ 𝜖

1/4
m

• 4th-order-accurate CD: ℎ∗
CD,4 ∝ 𝜖

1/5
m (≈12–13 digits)

• Hard limit: impossible to have > 16 accurate decimal
places on 64-bit machines without extra effort
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Is repeated differencing dangerous?

Options for 𝑓″(𝑥): 𝑓(𝑥−ℎ)−2𝑥+𝑓(𝑥+ℎ)
ℎ2 or 𝑓

′
CD(𝑥+ℎ)−𝑓

′
CD(𝑥−ℎ)

2ℎ .

Surprisingly, both have the same maximum attainable
accuracy, 𝑂(𝜖1/2m ) (7–8 digits). However, using ℎ∗

CD ∝ 𝜖
1/3
m

results in an 𝑂(𝜖1/3m ) error, i. e. only 5–6 accurate digits!

Total error of

f'
f''

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100

10−12

10−10

10−8

10−6

10−4

10−2

100

Rule of thumb: multiply ℎ∗
CD by 𝜖

1/4
m /𝜖1/3m ≈ 20.
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Approaches to step size selection



Paradigms for step-size search

1. Theoretical (plug-in expressions)
2. Empirical (finding the minimum of the total error)

My package, pnd, provides multiple algorithms (currently
under active feature implementation and testing).

Analogy: Silverman’s rule-of-thumb bandwidth vs.
data-driven cross-validated bandwidth in non-parametric
econometrics.
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Using plug-in higher-order estimates

Since the optimal ℎ∗ for 𝑓′
CD depends on the true 𝑓

‴,

1. Compute 𝑓‴
CD(𝑥, ℎ̃) using any reasonable ℎ̃ ∝ 𝜖

1/5
m (e. g.

naïve values 0.001 or 0.001𝑥)
2. Compute ℎ̂∗

CD =
3√1.5|𝑓(𝑥)|𝜖m/|𝑓

‴
CD(𝑥, ℎ̃)|

• Dumontet–Vignes (1977) proposed an iterative search
algorithm for a reliable ℎ̃

• Works for any orders 𝑚 and 𝑎: take ℎ̃ ∝ 𝜖1/(𝑎+𝑚)m

• Reassemble the available values of 𝑓 on (±ℎ, ±2ℎ) into a
4th-order-accurate 𝑓′

CD,4

Grad(func = CRRA, x = 2, h = "plugin", h0=0.01)
Grad(func = CRRA, x = 2, h = "DV")
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Controlling the error ratio

Curtis & Reid (1974) proposed choosing such ℎ that
truncation error 𝑒t
rounding error 𝑒r

∈ [10, 1000] (aim for 100)

Estimate the truncation and rounding errors separately:

• ̂𝑒t(𝑥, ℎ) = |𝑓
′
CD(𝑥, ℎ) − 𝑓′

FD(𝑥, ℎ)|
• ̂𝑒t = 𝑂(ℎ) is too conservative because 𝑒t = 𝑂(ℎ

2)

• ̂𝑒r(𝑥, ℎ) =
0.5|𝑓(𝑥)|𝜖m

ℎ

Since ̂𝑒t is over-estimated, this aim ensures that 𝑒t ≈ 𝑒r.

Grad(func = CRRA, x = 2, h = "CR")
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Controlling the error ratio, improved

The Curtis & Reid (1974) approach can be improved:

• Larger stencil + parallel evaluations = more accurate
truncation estimate
• 3 → 4 evaluations; modern machines have 4+ cores
• I propose and solve a system of equations for better
estimates of 𝑒t with 4 or more evaluations

• Eliminates the need for the ad hoc inflated target

• For 𝑓′
CD, 𝑒t/𝑒r at the optimum is 0.5, not 1

• With 4 evaluations, 𝑓′
CD can be computed from existing

values⇒ multiply the aim by 𝜖−2/15
m ≈ 120

Grad(func = CRRA, x = 2, h = "CRm")
Grad(func = CRRA, x = 2, h = "CRm", acc.order = 4)
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Controlling the truncation-branch slope

Stepleman & Winarsky (1979) and Mathur (2012) proposed
similar algorithms based on the idea of descending down
the right slope of the estimated truncation error:

• The slope of the right branch of the total error is 𝑎
• Choose a large enough ℎ0, set ℎ1 = 0.5ℎ0, get the

truncation error estimate ̂𝑒t(𝑥) =
𝑓′
CD(𝑥,ℎ1)−𝑓

′
CD(𝑥,ℎ0)

1−0.52

• Continue shrinking while the slope of ̂𝑒t is ≈ 𝑎, stop
when it deviates due to the substantial round-off error
• Never deals with the indeterminable round-off
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Noisy functions

Noisy function: many local optima and strong abrupt
changes of curvature.

In optimisation, accurate derivatives of noisy function are
useless (local features obscure global optima).

Although ℎ∗
CD =

3√1.5|𝑓/𝑓‴|𝜖m ∝ 1/𝑓
‴, use larger step

sizes to guess a better trend.

bseq

sa
pp

ly
(b

se
q,

 r
es

, p
 =

 p
) Sum(resid^2)

bseq

sa
pp

ly
(b

se
q,

 r
es

, p
 =

 p
) Sum(|resid|)

bseq

sa
pp

ly
(b

se
q,

 r
es

, p
 =

 p
) Sum(|resid|^0.5)

bseq

sa
pp

ly
(b

se
q,

 r
es

, p
 =

 p
) Sum(log(|resid|))
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Relative or absolute step?

• The optimal step size, ℎ∗
CD =

3√𝜖m ⋅ 1.5|𝑓(𝑥)/𝑓‴(𝑥)|,
depends on the value of 𝑥 only through 𝑓(𝑥)/𝑓‴(𝑥)

• However, relative step 𝑥 ⋅ ℎ∗
CD is often used to eliminate

the problems of units of measurement for large |𝑥|
• If 𝑥 = 1012 and ℎ̃ = 10−4, argument-representation errors
appear: |[𝑥 + ℎ̃]FP64 − (𝑥 + ℎ̃)| = 2 ⋅ 10−5 ≠ 0 (Slide 44)

• If 𝑥 = 10−5 and ℎ̃ = 10−4, 𝑥 − ℎ̃ < 0; bad if dom 𝑓 = ℝ++:
log 𝑥, √𝑥… (Slide 4)

• The magnitude of 𝑥 may be informative of the
curvature change, 𝑓‴(𝑥)

• Common practice: choose 𝑥min = 10
−5; for |𝑥| < 𝑥min,

use step size ℎ̃ and for |𝑥| ≥ 𝑥min, use step size |𝑥|ℎ̃
• Helps only with large 𝑥, not small 𝑥 such that |𝑓‴(𝑥)| ≫ 0
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Showcase of the new package



Finding approximations via interpolation

To calibrate 𝜂, you run thousands of simulations and
compute the goodness of fit 𝑓(𝜂). You get
𝜂 = (0.1, 0.2, 0.4, 0.8, 0.9), 𝑓(𝜂) = (0.2, 0.4, 0.5, 0.8, 0.7), but
you want to guess 𝑓 and 𝑓′ around 𝜂0 = 2/3.

fdCoef(0, stencil = (n - n0))$weights %*% f
fdCoef(1, stencil = (n - n0))$weights %*% f

Weights for 𝑓: (0.23,−0.56, 0.69,
0.98,−0.34) ⇒ 𝑓(2/3) ≈ 0.71.

Weights for 𝑓′: (−1.36, 3.51,−5.40,
3.30,−0.05) ⇒ 𝑓′(2/3) ≈ 1.04.

0.0 0.2 0.4 0.6 0.8 1.0
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Computing gradients for optimisation
Smoothed empirical likelihood with
missing endogenous variables (Cosma,
Kostyrka, Tripathi, 2024). Problem:
maximising SEL + computing ∇2-based
std. errors via BFGS on 4 CPU cores.

 0.999 

 0.99 

 0.95 

 0.9 

 0.75 

 0.5 

 0.25 

Method Ord. Time, s ‖∇SEL‖ Evals Iters

built-in 2 21+3.8 3.6 ⋅ 10−4 46 10
new 2 13+1.5 2.1 ⋅ 10−7 37 10
new 4 16+2.9 3.3 ⋅ 10−8 32 10

g4 <- function(x) pnd::Grad(SEL, x = x,
acc.order = 4, cores = 4)

optim(par = c(1, 1), SEL, gr = g4, method = "BFGS")
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Sensitivity of the error to the step size

Choosing a slightly sub-optimal step size is not as scary.

Example: for sin 𝑥, the optimal step size is ∝ tan 𝑥, which is
unbounded – a fixed small ℎ can work fine, too.

Or simply take the median of 𝑓′
CD(𝑥, ⋅) with ℎ ⋅ 0.1, ℎ, ℎ ⋅ 10.
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Improvements for the CR algorithm

1. Estimate the correct truncation error order with
4 parallel evaluations and using the correct target ratio

2. Obtain 𝑓′
CD,4 with algorithmically chosen ℎ

∗
CD,2 times 120

• ≈ 3 times more accurate than theoretical
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Demonstrations for another time

• Computing marginal effects in highly non-linear
computationally heavy models with big data

• Computing accurate standard errors in
conditional-volatility models (no more NaN in GARCH!)

• Choosing the optimal step size for complex
multi-dimensional maximisation

• Handling 𝑓 that are not accurate to the last digit
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Practical recommendations

Do not:
• Trust the built-in
numerical differences
• Especially the step size

• Fix ℎ = 0.01 because it
‘feels right’ / you
interpret a 1-cent change

• Use FD when evaluating 𝑓
is fast

• Believe that computers
cannot be arbitrarily
wrong

Do:
• Use all CPU cores
• Use optimal-step search
or simply ℎ = 𝜖1/(𝑎+𝑚)m

• For higher 𝑚, increase 𝑎
to have the error 𝑂(√𝜖m)

• Start gradient-based
optimisation with a
parallel CD2 gradient,
restart with CD4
• If no change, retrace
towards 𝑥start a bit
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Further work

• Finish the formal part, test the suggested algorithm
improvements

• Test the default parameters and upload the R package
to CRAN as pnd
• Currently under actively development on
github.com/Fifis/pnd

• Add memoisation to reuse the cached evaluations in
optimisation routines

• Add facilities to compute higher-order-accurate
derivatives from previous candidate step sizes

• Implement complex derivatives
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