A new solution for computing
quick and accurate

numerical derivatives

Results from the working paper:
Kostyrka, A. V. (2025). What are you doing, step size:
Fast computation of accurate numerical derivatives with finite precision.

Department of Economics
and Management (DEM)

And.rell. V KOSTYRKA I| lli . Ill ‘ UNIVERSITE DU LUXEMBOURG

DEM internal seminar series

Faculty of Law, Economics, and Finance (FDEF)
University of Luxembourg

4t of February 2025

Presentation structure

1. Motivation and empirical applications

2. Approximations of analytical derivatives

3. Step size effect on the approximation error
4. Step-size selection algorithms

5. Showcase of pnd

Motivation and empirical applications

Contribution

| extend the existing numerical-methods literature and software
ecosystem by:

1. Creating the open-source R package pnd for fast, parallelised
numerical differentiation
- First open-source parallel Jacobians, Hessians and
higher-order-accurate gradients

2. Deriving analytical error bounds and optimal step-size rules for
higher-order-accurate derivatives and second-order-accurate
Hessians

3. Implementing previously proposed algorithms of step-size
estimation, benchmarking their relative performance, and
suggesting improved modifications

1/48

Which step size are we talking about?

Cradient-based optimisation

2/48

Which step size are we talking about?

Cradient-based optimisation

2/48

Which step size are we talking about?

Cradient-based optimisation

2/48

Which step size are we talking about?

Cradient-based optimisation

2/48

Which step size are we talking about?

Cradient-based optimisation

2/48

Which step size are we talking about?

Cradient-based optimisation

2/48

Which step size are we talking about?

Cradient-based optimisation

Computing slopes

2/48

Which step size are we talking about?

Cradient-based optimisation Computing slopes

2/48

Which step size are we talking about?

Cradient-based optimisation Computing slopes

2/48

Which step size are we talking about?

Cradient-based optimisation Computing slopes

2/48

Which step size are we talking about?

Gradient-based optimisation Computing slopes

2/48

Which efficiency are we talking about?

- Huge data sets, billions of parameters, approximate solutions

- Big data sets, 1-1000 parameters, exact solutions <= This one.

Efficiency: parallelisation and full user control to reduce the
guesswork carried out by the computer.

Accuracy: crucial for inference in science (inaccurate numerical
Hessians = wrong standard errors = wrong conclusions about
significance)

pnd can handle large Hessians, but the user should probably avoid
inverting them (there could exist dedicated stable procedures).

3/48

Motivation and research question

- Researchers rely on optimisers, algorithms, black boxes etc. to
‘solve’ their models and carry out inference

- The end resultis highly dependent on the solver quality

- Most popular modern optimisation techniques use numerical
gradients for minimisation or maximisation

However, most software implementations yield inaccurate and slow

numerical derivatives.

How can we attain the hardware-dependent
accuracy bound for numerical derivatives?

4/48

Consequences of inaccurate derivatives

- Inexact solutions, values not at the optimum
- Wrong asymptotic-approximation-based inference

- No causal interpretation or specification testing
- Wrong standard errors and p values in non-linear models
- Worst case: negative Hessian-based variances

- Methods based on empirical likelihood (EL) forego Hessians for
inference, but converting a model into an EL-based one is non-trivial

5/48

Example from a financial application

Simple AR(1)-GARCH(1, 1) model for NASDAQ log-returns,

1990-1994:

re = |+ pri_y + o:Us,

2 2 2
o, =w+al;_, + Bo;_,

Coefficient Est. t-stat t-stat t-stat

(rugarch) (fGarch) (manual)
7] 0.0007 2.34 2.31 2.33
P 0.24 7.77 7.73 7.73
w X 10° 0.0098 NaNor 65 3.09 3.08

default fallback

o 0.13 1.1 4.27 4.26
ﬁ 0.73 39.6 10.9 11.0

6/48

Example from seasonal adjustment

Goal: estimate the slope of the seasonal component in CO, levels via
the model CO, = ('Spline;(x) + 7 sin(5z525—7st — 9).

365.25-86 400

1960 1965 1970 1975 1980 1985 1990 1995
L | | | | | |]
3 — = Spline fit
3] —— Spline + trigonometric fit

Atmospheric CO2, ppm
320 340

f T T T T 1
-2e+08 0e+00 2e+08 4e+08 6e+08 8e+08

Seconds since 1970-01-01 (POSIX)
Caveat: the time in the data based is encoded as POSIX time
(seconds since 1970). Range of t: —347155200 ... 880934400.

Relative error: ~100% (nonsensical dCO, /dx within the range)!
7/48

Gradients, Jacobians, Hessians in economics

- Gradient: marginal effects and causal interpretation

- Itis common to numerically estimate the response of Y to a small
change X in large systems of interdependent equations

- Hessian: standard errors in semi-parametric and parametric
models (non-linear least squares, GMM, maximum likelihood:
probit, logit, heckit...)

- Jacobian: must be supplied in constrained-optimisation
problems (optimisation subject tog(6) = 0, h(#) > 0)

- Numerical optimisation with steepest-descent / hill-climbing
methods

Necessary in any model that is not linear in parameters.

8/48

You have encountered numerical algorithms

12 heckman — Heckman selection model

. use https://www.stata-press.com/data/r18/twopart

. heckman yt x1 x2 x3, select(zl z2) nonrtol

Iteration 0: Log
Iteration 1: Log
Iteration 2: Log
Iteration 3: Log
Tteration 4: Log

likelihood = -111.94996
likelihood = -110.82258
likelihood = -110.17707
likelihood = -107.70663 (not concave)
likelihood = -107.07729 (not concave)

(output omitted)

Iteration 36: Log likelihood = -104.0825
Heckman selection model Number of obs = 150
(regression model with sample selection) Selected = 63
Nonselected = 87
Wald chi2(3) = 8.84e+08
Log likelihood = -104.0825 Prob > chi2 = 0.0000
yt Coefficient Std. err. z P>|z| [95% conf. intervall

yt

x1 .8974192 .0002164 4146.52 0.000 .896995 .8978434
x2 =-2.525303 .0001244 -2.0e+04 0.000 -2.525546 =2.525059
x3 2.855786 .0002695 1.let+04 0.000 2.855258 2.856314
_cons .6975003 .0807873 7.68 0.000 .5195604 .8754402

9/48

You have encountered numerical algorithms

12 heckman — Heckman selection model

. use https://www.stata-press.com/data/r18/twopart

. heckman yt x1 x2 x3, select(zl z2) nonrtol

Iteration 0: Log
Iteration 1: Log
Iteration 2: Log
Iteration 3: Log
Iteration 4: Log
(output omitted)
Iteration 36: Log
Heckman selection
(regression model

likelihood
likelihood
likelihood
likelihood
likelihood

likelihood
model

=111.94996
-110.82268
= -110.17707
= -107.70663
= -107.07729

= I -104.0825

with sample selection)

h 4

(not concave)
(not concave)

Number of obs

Selected
Nonselected

Gradient #1: quasi-Newton
optimisation direction

150
63
87

8.84e+08
0.0000

.0002164
.0001244
.0002695
.0907873

Log likelihood = -104.0825
yt Coefﬂ1c1ent Std. err.
yt
x1 8974192
x2 -2.525303
x3 2.855786
_cons 6975003

4146.52
~2.0e+04
1.1le+04
7.68

P>|z|

0.000
0.000
0.000
0.000

[95% ¢enf. intejvall
Y —Gradient #2: He55|an based SE from this at this

.886995
-2.525546
2.855258
.5185604

.8978434
-2.525069
2.856314
-8754402

9/48

Existing literature / software

- Gilbert & Varadhan (2019). numDexiv: Accurate Numerical
Derivatives.
cran.r-project.org/package=numDeriv

- Non-parallel version without vignettes or derivations

- Gerber & Furrer (2019). optimParallel: AnR Package
Providing a Parallel Version of the L-BFGS-B Optimization
Method. The R Journal 11 (1).
cran.r-project.org/package=optimParallel

- Limited to the built-inoptim(method = "L-BFGS-B")

- Papers on computer algorithms from the 1970s
- Hong, Mahajan & Nekipelov, (2015, JoE). Extremum estimation

and numerical derivatives.

10/48

cran.r-project.org/package=numDeriv
cran.r-project.org/package=optimParallel

Selling pnd

Compare the software: numerical derivative error for f(x) = sinxon
the evaluation grid log,, x ~ Unif[—3, 6].

® pnd CRm2 ® NumPy ® Scilab Total error
1072 4| ® pndSW @ SciPy

4 | numDeriv @ numdifftools

102 10 107 10° 10 102 10° 10* 10° 10°

*Some entries are cheating and do better by being slower and computing more
derivatives —impractical for heavy-duty applications.
11/48

pnd = numDeriv + optimParallel (+ tweaks)

Approximations of analytical derivatives

Derivative of a function

Derivative: The instantaneous rate of change of a function.

f'(x) = — = lim

dx h—0
Assume that f is differentiable and
therefore continuous.

df f(x+h) —f(x)
h

f'(x) is the slope of the tangent line to the
graph atx.

lllustration: f(x) := x*, f'(x) = 3x%.

f(1) =1,f'(1) = 3. The tangent equation
atx = 1is3x — 2.

Naive numerical derivatives

In the definition

. f(x+h) —f(x)
/ -
Fix) := Jim, h ’
remove the limit to obtain a forward difference:
f(x+h)—f(x
Folx,) = R)
Choose a sequence of decreasing step sizes h; (e. g.
{0.1,0.01,0.001, .. .}), observe the sequence
fio(x,0.1), fip(x, 0.01), fi5(x, 0.001), . . . converge to f’.

13/48

Naive numerical derivatives in practice

Mathematically, ffp(x, 0.1), fip(X, 0.01), fip(x, 0.001), .. . converges
to f'(x).

Forward diff.

Error

04
0.3
0.2
0.1
0.0
107

107

e .
++

T4
+
+
+
+
+
4
+

+
Tty

+++++++++++++++++++
++

Step size

Naive numerical derivatives in practice

Mathematically, ffp(x, 0.1), fip(X, 0.01), fip(x, 0.001), .. . converges
to f'(x).

Forward diff.

Error

04 —

0.3

0.2 —

0.1 —

0.0

%HH%WHH%HHMFMMH_++

T,

+
&Y
*

L

107

I I I I 1
107 10™ 107 10° 102
Step size

Naive numerical derivatives in practice

Mathematically, ffp(x, 0.1), fip(X, 0.01), fip(x, 0.001), .. . converges
to f'(x). But not true in practice!

Forward diff.

Error

0™ 10" 10™ 10" 10" 10® 10° 10* 10 10° 10
Step size

Graphical illustration of accuracy

—_— f

---- True tangent

15/48

Graphical illustration of accuracy

—_—
---- True tangent
— — Forward diff.

Cf(x) =%, x0 =1
. f’(xo) =3
- Stepsizeh = 0.2

- fio(x0,0.2) = 3.64
Error =~ 21%

15/48

Graphical illustration of accuracy

—_— f

True tangent
Forward diff.
Central diff.

- f(X) =%, x0 =1
. f’(Xo) =3
- Stepsizeh = 0.2

io(X0,0.2) = 3.64
Error =~ 21%

- f{5(x0,0.2) = 3.04

Error~1.3%

15/48

Second-order accuracy of derivatives

Central differences are symmetrical around x:

ol) = LT

fy is more accurate than f/,:*
P10 = fiolx,) = =5~ — 2 = o(h)
P10 = ol h) = = & — B = ()

If f(x) has not been evaluated, computing f{, and f{, takes the same
amount of time —use 5.

If f(x) is already known, CD requires 1 more computation than 5,
which is 2 times slower — use f/;, for costly f.

* Assuming f”" and "’ are uniformly bounded.

16 /48

Improvements via Richardson extrapolation

Since numerical derivatives are based on polynomial approximations
of functions, one can reduce the truncation error iteratively.

Romberg’s method / Newton—Cotes formula:
1. Compute f5(x, hy) and f¢p(x, h;) for two different step sizes
hy > h,
2. Develop their Taylor expansions:
féo(x,) = f'(x) + ah* + ...
flo(x, hy) = f'(X) + ¢;h* + . ..
3. Find such weights w; + w, = 1that w;¢; + w,c, = Osothatthe
O(h?) error term vanishes, yielding
afep(X,) + cafép(x, hz) = f'(x) + O(h*)
4. Iterate furtherwith by > h, > h; > ...andh;/hi ;s =r > 1to
get a better approximation
17 /48

Richardson-like extrapolation illustration

i
0.6 0.8 1.0 1.2
1

04

0.2

18/48

Richardson-like extrapolation illustration

i
0.6 0.8 1.0 1.2
1

04

0.2

18/48

Richardson-like extrapolation illustration

" i
o i
S g 2
(%] [l
_ ° i
E o | 2 !
° E o |
2 o i
< w i
S i
© i
~ S T
o :

T T T 1T 1T T 1 i T T T T 1

0.0 0.2 04 0.6 0.00 0.10 0.20
X Step size

18/48

Richardson-like extrapolation illustration

" i
o i
S g 2
(%] [l
_ ° i
E o | 2 !
° E o |
2 o i
< w i
S i
© i
~ S T
o :

T T T 1T 1T T 1 i T T T T 1

0.0 0.2 04 0.6 0.00 0.10 0.20
X Step size

18/48

Richardson-like extrapolation illustration

" i
o N o /
[} | //
S g 2
(%] [l
_ ° i
E o | 2 !
° E o |
h oS |
" 4 L
S >:<’
o _|i?
~ s T
o :
T T T 1T 1T T 1 f T T T T 1
0.0 0.2 04 0.6 0.00 0.10 0.20
X Step size

18/48

Richardson-like extrapolation illustration

" i
o N o /
[} | //
S g 2
(%] [l
_ ° i
E o | 2 !
° E o |
h oS |
" 4 L
S >:<’
o _|i?
~ s T
o :
T T T 1T 1T T 1 f T T T T 1
0.0 0.2 04 0.6 0.00 0.10 0.20
X Step size

18/48

Richardson-like extrapolation illustration

" !
:"")‘\‘:'\' """""""" /
(] Leeracennn i D
S g 2
%] 1
— ko) :
E o | 2 !
° E o |
2 o i
< o |
o i
© |
~ s
SH |
T T 1T T T T 1 i T T T T 1
0.0 0.2 04 0.6 0.00 0.10 0.20
X Step size

18/48

Richardson-like extrapolation illustration

" !
:"")‘\‘:'\' """""""" /
(] Leeracennn i D
S g 2
%] 1
— ko) :
E o | 2 !
° E o |
2 o i
< o |
o i
© |
~ s
SH |
T T 1T T T T 1 i T T T T 1
0.0 0.2 04 0.6 0.00 0.10 0.20
X Step size

18/48

Richardson-like extrapolation illustration

" i
o N o /
o Levraeraemnesseneenas
g - =T - ’/
w0 E,/
= 2 X
= 9 _] = :7
° E o |
2 o i
< w i
S i
© _|i
~ S T
o :
T T T 1T 1T T 1 i T T T T 1
0.0 0.2 04 0.6 0.00 0.10 0.20
X Step size

18/48

Richardson-like extrapolation illustration

" i
o N o /
o Levraeraemnesseneenas
g - =T - ’/
w0 E,/
= 2 X
= 9 _] = :7
° E o |
2 o i
< w i
S i
© _|i
~ S T
o :
T T T 1T 1T T 1 i T T T T 1
0.0 0.2 04 0.6 0.00 0.10 0.20
X Step size

18/48

Richardson-like extrapolation illustration

I I I]
0.0 0.20

o~
A\ I
1
1
1
N o
S - !
= ! /
1
T
o H
w | s o e
- a |
q O Nz
— ko) 1?
> Ie
= © 2 !
o o i
1S 0 |
R=) _|!
"‘7; o |
< - i
o i
1
© i
~ °
S i
\
|
0

o

X Step size

18/48

Higher-order accuracy of first derivatives

Better accuracy is achievable with more terms in the sum. Carefully
choose the coefficients to eliminate the undesirable terms:

;=) + flxth)

2
. " +0(h?)
floa
pro fxz2h) = sf(x—h) £ 8f(xth) = fx+2h) o)
12h
o

For the same small h, the error of f(;, ,, O(h*), is generally smaller
than that of f(;, ,, O(h?). + Parallelisation!

19/48

Higher-order accuracy of m™-order derivatives

Stencil: strictly increasing sequence of real numbers: b; < ... < b,.
(Preferably symmetricaround O for the best accuracy.) Example:
b=(-2,-1,1,2).

Derivatives of any order m with error O(h®) may be approximated as
weighted sums of f evaluated on the evaluation grid for that stencil:
X+ bh,....,x+ b,h.

With enough points (n > m), one can find such weights {w;}_, that
yield the a"-order-accurate approximation of f("), wherea < n — m:
d"f
dxm

(x)=h"" i wif (x + bih) 4+ O(h")

i=1

20/48

Efficient parallelisation of gradients

Example: Vf(x),dim x = 3, stencil b = (—2, —1,1,2) for 4"-order
accuracy, same step size h. Total: 12 evaluations.

1

‘ W-|:— W2: 8 !

x| f(x — 211’71) f(h1)2 f(x I— 1’1'12) f(x :‘ 21"112)
x| f(x —2hy) f(x—hy) f(x+hy) f(x+2h,)
() f(x)

(x
xC) | f(x —2h3) f(x —hs) f(x+hs) f(x+ 2hs

-

- Create alist of length 12 containing x + bjh;

- Apply f in parallel to the list items, assemble
{{f(x+ b))}, };:1 in a matrix

- Compute weighted row sums

21/48

Step size effect on the approximation error

Real case #1: numerical derivative failure

- An economist is modelling some variable Y thatis linear in the
GDP:Y :=1-GDP+¢g(...)+ U

- OE(Y | ...)/OGDP = 1, but they use numerical derivatives

- Lux GDP is 80 bn € = the gap between two representable
numbersis 8 -10'°/2°* ~1.7-107°

- Step size: 1078 (from the literature)

[8-10" +107%] — 8-10"
VoorY ’copm ~ 10-8

- [8-10" 4+107%] = 8- 10" because107% < 1 - 1.7 -10° = the
numerator is zero (cf. Slide 14 plot)

—

- Error: the computer returns 9Y /OGDP = 0 instead of 1!

22/48

Total error in numerical derivatives

Step size selection is critical for accuracy:
- htoo large — large truncation error from the truncated
Taylor-series term (poor mathematical approximation)

- htoo small — large rounding error (poor numerical
approximation): catastrophic cancellation, division of something
small by something small, machine accuracy always limited by

€mach

Finding the optimal h* to balance these two errors is possible.

23/48

Analytical error bounds for central diff.

Computing f results in a roundingerror: f(...) := me(.) + €round-

[F(x + h) — f(x —)] — [freea(x + h) — Frpsa(x — h)] = e, —e_

true difference computer evaluation
Rounding-error numerator bound:* |e; — e_| < |f(X)|€mach-
0.5(e; —e_)

"
F(x) — (i)~ 6(X) o+ 250
overall nun:.rderivA error S—— Y

truncation rounding

*f(x + h), f(x — h) must have the same magnitude (binary exponent).

24 /48

Total error composition

N M O

- —- Truncation
Rounding
—— Total

108 107

Step size

25/48

Optimal step size

Total-error function: conservative absolute bound (after several
harmless simplifications).

Eco(x, h) := F7(x)|h2+05|f()|€machh ™

If”()l

EFD(X7 h) = h + |f()| malchh_1

Optimal step sizes that minimise it:

B ET) 200

Wﬁmacm WEmach
Therefore, hiy o< en{ach and hfy o< emach (machine-dependent).

26/48

Optimal step tips and tricks

Rules of thumb to help one save time and obtain more useful
quantities once they have determined h{p ,"
1/4 1/12

- Since hgp , o €macns o 2/ D4 X Emach-
Multiply hCD , by~20 forareasonable step size for second

derivatives (f”)
- Logic: higher derivation order = division by h* instead of h =
higher rounding error = increasing h* to reduce it

% 2/15
- Similarly, hep , =oc €machr”’co 2/epa X Ernach-

Multlply h¢p 2 by ~100 fora reasonable step size for
4th_order-accurate first derivatives (f’ but better)

- Logic: higher approximation order = more points = smaller
truncation error at hip , = increasing h™* to reduce the rounding
error

27/48

Optimal step troubleshooting

- Ifthe function is quasi-quadratic, f” ~ 0,f"" ~ 0, ..., then, the
step-size search might be unreliable
- Happens at the optima of likelihood functions in large samples
- Solution: use the fixed step \/€mach max{|x|,1} after checking
diagnostic messages
- Typical error: step size too large after dividing by f”, solution at the
search range boundary, or solution greater than |x|...

- Ifthe function is noisy / approximate, multiply h¢y, , by 10 per
3 wrong digits of f
- If f(x) has numerical root search, optimisation, integration,
differentiation, etc., |f(x) — f(x)|/|f(x)| > 0 by more than emach
- In general, replace €mach in the total-error formula with the
maximum expected relative error = h becomes larger with more
wrong decimal digits

28/48

Total error in noisy functions

10° — i !
107 : i
107 !
107 i i
10 — E . Total error of
10710 - : ‘e accurate f
' o 3-wrong-digit f
107" - i . ie 6-wrong-digit f
| T T T T 1 T T T |
10 10° 10® 107 10° 10° 10™ 10° 102 107 10°

Step-size selection algorithms

Using plug-in estimates of {"

Since the optimal h* for f/; depends on the true f",

1. Compute fZ(x, h) using any reasonable h o< €2, (e. g. naive
values like or 0.001 max(1, |x|))

2. Compute ity = {/1.51F(x)|emaen/F24(x.)|
- Dumontet-Vignes (1977) proposed an iterative search algorithm
- Works for all differentiation and accuracy orders with appropriate
changes

- Reassemble the available values of f({£h, £2h}) intoa
4™-order-accurate f{p ,

Grad (FUN f, x = x0, h "plugin", hO = le-5)
Grad(FUN = £, x = x0, h = "DV")

30/48

Objective function to minimise

Absolute Error

f(

x)

1e+01

1e-05

1e-1

=x*+cosx+exp(x —1), xo=m/4, f'(x)=7

—— Truncation
—| —— Rounding
| —— Total

[I I I I I
Tle-14 Te-1 1e-08 1e-05 Te-02 1e+01

Step size

31/48

Controlling the error ratio

Observation: when the truncation error and the rounding error are
similar, the total error is minimal.

Curtis & Reid (1974) proposed choosing such h that

over-estimated truncation error e,

: € [10,1000] (aim for100)
rounding errore,

Estimate the truncation and rounding errors separately:
- e(x, h) = |flo(x, h) — fis(x, h)| —too conservative
- &(x, h) = 0.5|f(x)|€mach/h
Since ¢, is over-estimated, this aim ensures thate, ~ e,.
Grad(func = £, x = x0, h = "CR")
32/48

Curtis—Reid algorithm visualisation

— |—e— Truncation
$ _{—e— Rounding
— 2 —e— Total
g —
o™
L ? |
3)
= —
= _
(%) D~
£ =
< ()
2
-
=
1 - 1
<2 [| | I | |
2

1e-15 1e-12 1e-09 1e-06 1e-03 1e+00

Step size

33/48

Error-ratio control improvement

- Larger stencil + parallelism = more accurate truncation estimate

- | correct the estimates and the target ratio

- With 4 evaluations, f(;, , can be computed from existing values
= multiply the aim by e;:c/gs ~ 120

- Positive externality: the step search yields more than one asked for

Grad(f, x = x0, h = "CRm")
gradstep(f, x = x0, method = "CRm",
control = list(acc.order = 4))

34/48

Curtis—Reid 2025 improvement visualisation

— . I
- —e— Truncation .
? | Rounding |
. £ |- Total |
o — 1
:]
509 !
— I
S o |
> — I
— I
o] 1
[%2] D~ |
2 9 4 :
< [} 1
— I
— I
|
— |
N \

) [I I I I |

3

1e-15 1e-12 1e-09 1e-06 1e-03 1e+00

Step size

35/48

Controlling the truncation-branch slope

Stepleman & Winarsky (1979) and Mathur (2012) proposed similar
algorithms based on the idea of descending down the right slope of
the estimated truncation error:

- The slope of the right branch of the total erroris a
- Choose a large enough hy, set h; = 0.5hy, get the truncation error
estimate from f{y(x, hy) and fl5(x, ho)

- Continue shrinking while the slope of &; is &~ 2 (accuracy order);
stop when it deviates due to the substantial round-off error

- Never deals with the indeterminable round-off

Grad(f, x = x0, h = "SW")
Grad(f, x X0, method = "M")

36/48

Slope-control algorithm visualisation

Estimated error vs. finite-difference step size

assuming rel. condition err. < 111e-16, rel. subtractive err. < 111e-16

x
2 g o Truncation x Rounding o Total
S 3] B
c —
= n ° 0
e 8 ®
= @ o
@ (<]
U; -
“ _
T o
- T
£ 2
E 7 . .
2 2 e Good e Fair e Invalid
wl 1 p—
(]
- T T T 1 1 1 1

le-14 1e-11 1e-08 1e-05 1e-02 1le+01 Te+04
Step size
Good: slope &~ 2 + 1%, invalid: slope > 0, but slope % 2.
37/48

Showcase of pnd

Compatibility with numDeriv

numDeriv remains the most popular R package for non-parallel
computation of accurate derivatives without step-size selection.

Simply replace the first lowercase letter with an uppercase one.

numDeriv pnd
grad(f, x) Grad(f, x)
jacobian(fvector, x) Jacobian(fvector, x)
hessian(fscalar, x) Hessian(fscalar, x)

38/48

Example #1: optimisation with gradients

dim x

f(x) := Z(X'Z + 2sinx; + 1.19)

i=1

library(pnd)
f <- function(x) sum(x”2 + 2%sin(x) + 1.1”x)
initval <- runif(10, -1, 1) # dim X = 10

optim(initval, £, method = "BFGS")

g <- function(x) Grad(f, x) # length(g) = 10
optim(initval, £, gr = g, method = "BFGS")

Custom step and higher accuracy

h <- gradstep(f, initval, method = "plugin")$par

g2 <- function(x) Grad(f, x, acc.order = 4, h = h«10,
elementwise FALSE, vectorised = FALSE,
multivalued FALSE)

optim(initval, £, gr = g2, method = "BFGS")

39/48

Example #2: Jacobians and Hessians

dim x

f=>_

i=1

f2 <- function(x)
Jacobian(x = 1:3,

0.5403023
2.7182818

sine
expo

f3 <- function(x)

Hessian(f3, x = 1:

0.0817 0.0240
0.0240 0.0817
0.3681 -0.2624
-0.0453 0.0323

sin x;
expx;)’

c(sine
expo

dim x

ﬁ:::I]:ﬁnxi
i=1

sum(sin(x)),
sum(exp(x)))

f2, report = 0)

-0.4161468 -0.9899925
7.3890561 20.0855369

prod(sin(x))
4, report = 0)

0.3681
-0.2624
0.0817
0.4951

-0.0453
0.0323
0.4951
0.0817

40/48

pnd

- 63 foreseen errors (so far)

- 26 foreseen warnings (as of

today)

- 8 possible configurations of

function properties and

capabilities

- Multi-stage input checks

with error handling and
possible parallelisation

- The user may supply
arguments to ensure no
run-time or silent error

User-friendliness and thoroughness of pnd

numDeriv
- 19 foreseen errors
- Zero foreseen warnings

- Only 3 possible function
configurations

- One-stage input check only

one error check

- Impossible to obtain
Jacobians for certain
functions (e. g.

f(x) := (sinx, cos x)')
- No user controls

41/48

Example of error informativeness

pnd is more verbose and provides direct suggestions whatto do in
case the user has provided incompatible inputs.

2 <- function(x) c(sin(x), cos(x))
grad(f2, x = 1:4)
Error: grad assumes a scalar valued function.

Grad(f2, x = 1:4)

Use 'Jacobian()' instead of 'Grad()'
for vector-valued functions to obtain
a matrix of derivatives.

42 /48

Error of step-selection methods for f(x) := sin x

Theoretically optimal: ¥/ ﬂgﬁ% = /1.5/ tan X|€mach

Rule of thumb: \/€pach - min(1, |x|). Curtis—Reid: 1974 version +
2 modifications (2025). Evaluation grid: x € [107%,10°].

Absolute total error
=

_| ® Theor. opt. Plug-in ® mod. Curtis-Reid(2)

Rule of thumb @® Curtis-Reid ® mod. Curtis-Reid(4)

Total error

Step size

Project support

= 0

& Fifis/ pnd (F ¥ Fork O @

<> code (Issues I Pullrequests (D Actions O Security [+ Insights

¥ main ~ ¥ © Go to file <> Code ~ About

R package for accurate and quick
numerical derivatives of arbitrary
order

@) Fifis Auto-generated documentation update
B github
B R

inst

man

tests

< O s Q& B8

vignettes

https://github.com/fifis/pnd

https://github.com/fifis/pnd

Demonstrations for another time

- Computing marginal effects in highly non-linear computationally
heavy models with big data

- Computing accurate standard errors in conditional-volatility
models (no more NaN in GARCH!)

- Choosing the optimal step size for complex multi-dimensional
maximisation

- Handling f thatis not accurate to the last digit

45/48

Further work -1

- Finish the formal part, test the suggested algorithm
improvements

- Upload the R package to CRAN as pnd (currently tested on
github.com/Fifis/pnd)

- Improve the Dumontet-Vignes and Mathur algorithm by
returning higher-order-accurate derivatives from available
calculations

- Add facilities to compute higher-order-accurate derivatives from
previous candidate step sizes

- Implement complex derivatives

46 /48

https://github.com/Fifis/pnd

Further work -1l

14/ ite-dift.R X of vectorise s do no Check compati
[T0D0 1 : implement interpolation gth as x? Example
/Dropbox/HSE/La/pnd/pndiR/gradient & : Check the example with neural networks where does n
® 0D0] : in this example, the 1:4 vector is not : Hatching in the Hessian is too slow —— de-duplicate firs
[Tobo fix the next example G: 1x1 Hessians? .
[Topo describe the default step size T L:g.r.m into 10 vectorised tnput and multi
[ToDo check method.args as well FEATURE: Repl
[T0D0 the part where step is compared to step FEATURE:
[T0D0 for long vectorised argument, vectorise FEATURE:
[T0D0
[ToDO

[Tobo

£ ng val
use this gradient already FEATURE: plug-in s e o estinated
tinisation o algorithm for ai y derivative and
o misation T o E: update the rounding error as the estimated sum
: This is NOT gu eed, hoever, to gue flandle WA in step size selection
heck if FUN(x) was eval K th ze at the beginning
Find where it maps \ nes to g
deduplicate, save
“Currently ignored.

RE: ad B bty ST o o)
the part whe: p p | and precomputed List(stencil, f) to r
compute f0,

if x is

: A o A
te this in C++ to eliminate bott) . cks: func(x) must be numeric of length
implementing autosteps,

roplsoxMSELa/pndipnd!
® [o

[Tobo
[Tobo
[Tobo
[Tobo
[Tobo
[Tobo

instead of subtracting one, add one
generalise late;
generalise with (d)
debug this function, test with shrink.fg
any power
: o unit-test coverage >90%

first NA from the output : the conpatibility between the function and its documenta
colour okay slopes differently, warn... b @ Hi el ki

1

1

1

1

1

1

]

]

]

]

1

1

]

] a | o
1: try mixed accurac r : s present in miltint
]

]

+

]

]

]

]

]

]

]

]

1

1

1

1

[T0DO

But most importantly... please send your failing examples!
Unit tests < user feedback and reproducible errors
46 /48

Practical recommendations—|

Do not: Do:

- Believe that computers
cannot be arbitrarily wrong

- Functions are lossy
- Trust the built-in numerical
differences
- Especially the step size

- Fixh = 0.01 because it ‘feels
right’ /you interpreta1-¢
change

- Benchmark evaluation time

- Use optimal-step search or

1/ a+m)
€mach

simply h =

- For higher orders of derivatives

and/or accuracy, increase h to
keep the error low

47/48

Practical recommendations—1I

Do not: Do:
. Use FDwhenevaluatingfis - Startcostly optimisations with
fast a parallel CD2 gradient, restart

from the found optimum (or
near it) with CD4

- Use CD4 to measure || Vf|| for
checking optima

- Request 20 cores for quick
functions

- Use all CPU cores only iff is
slowerthan 0.02s
- On Windows: create the

cluster beforehand and pass it
toGrad () /Jacobian()

48 /48

Thank you for
your attention
and feedback!

g

github.com/Fifis/pnd
andrei.kostyrka@uni.lu

https://github.com/Fifis/pnd

Function and its derivative accuracy comparison

- The vast majority of function evaluations on a computer are lossy
due to finite memory, even linear transformations

. Each operation typically addsa ~ 107 relative error (at least)

- Numerical derivatives are much less accurate than function
values

- ...by afactorof ~100 000 in the best case!

- Many software packages settle fora x10 000 000 accuracy
degradation

- ..which isworse /100 times than it could have been

49 /48

Non-existent literature / software

- Most modern articles focus on ultra-high-dimensional numerical
gradients with much fewer evaluations
- Only one (!) paper (Mathur 2012, Ph. D. thesis) with a comprehensive
treatment of the classical case useful for low-dimensional models

- Existing algorithms (Curtis & Reid 1974, Dumontet & Vignes 1977,
Stepleman & Winarsky 1979) lack open-source implementations
- Popular software packages implement very rough rules and do not
refer to any optimality results in the literature
- Most implementations of higher-order and cross-derivatives are
through repeated differencing
- Slower and less accurate than the best solution

50/48

Derivatives in linear models

FUELSALES = ﬁo + 51 Prx + ﬁzpabroad
+ B3COMMUTERS + (3,LOCKDOWN + U

- Exogeneity assumption:
E(U | Pruxs Pabroad; COMMUTERS, LOCKDOWN) = 0

- 52 —E[FUELSALES | Ppux, Pabroad, - - -] = B2 by exogeneity

apabmad
- Causal interpretation: if the foreign fuel price changes by 1€,
fuel sales will change by (3, units ceteris paribus (including U)

51/48

Partial solutions

- RpackagesnumDerivandoptimParallel

- numDeriv: the most full-featured arsenal in terms of accuracy, but
slow; optimParallel: speed gains but no focus on accuracy

- Pythonsnumdifftools
- Discusses Richardson extrapolation; no error analysis
- MATLAB's Optimisation Toolbox

- Focuses on parallel evaluation, not accuracy

- Stata'sderiv
- Implements a step-size search to obtain 8 accurate digits

52/48

Derivatives in non-linear models

Economic vulnerability model for women over 50:

Y* = o + Y3 EducYears + v, NonWhite
+ 3EducYears x NonWhite + X' By + U := X0, + U

y;:{“ ' >0, P(Y =1|X) = Fy(X6,), U~N,A,...

0, Y*<o,
OB(Y=1]X) . ¢, |
 OFducYears fu(X'0o) - (1 + s NonWhite)
OP(Y =11X) . o,
~ ONonWhite fu(X'0o) - (72 + 5 EducYears)

Inference on 73 is not intuitive.

53/48

Inference in non-linear models

Policy-makers are interested in the effects due to changes in
explanatory variables, not parameters.

ax(k SP(Y =1 >~<)
0PV =11 X).

Average partial effect of the k' variable: E-2

Its straightforward estimator |s1 S, X0

Embarrassingly parallel task: a problem that can be splitinto
smaller problems that can be solved in parallel with no
communication between the processes.

- Computing the n-dimensional derivative vector
{BXL},@I@’(Y,» =1 X;)}"_ isembarrassingly parallel

- Inference on 0, based on the Hessian of the log-likelihood is
embarrassingly parallel

54 /48

Complications in non-linear models

- Fy is often confined to a specific family (Poisson, exponential,
Gaussian, logistic etc.)
- This parametric assumption could be wrong
- A more flexible approximation of the true distribution of U may not
have a manageable closed-form derivative

- Most data-generating process in economics are highly non-linear
and hard-to-formalise
- Non-linear high-dimensional models tend to have a better
explanatory power and yield more accurate forecasts
- Loss of parameter interpretability
- Numerical derivatives are often the only solution

55/48

Gradient of a function

Gradient: column vector of partial derivatives of a differentiable
scalar function.

Vf(x) =

- Vector input x + scalar output f = vector V

- Atany point x, the gradient—the d-dimensional slope —is the
direction and rate of the steepest growth of f

‘A source of anxiety for non-mathematics students.
J. Nash, ‘Nonlinear Parameter Optimization’ (2014).

56 /48

[Visualisation of a gradient]

(3D clip)

Jacobian of a function

Jacobian: Matrix of gradients for a vector-valued function f.
Ifdimx =d, dimf =k,

VTf(1)(X)
Vi) = (200 -) =

VTf(k)(X)

kxd
- Vector input x + vector output f = matrix V
- In constrained problems, most solvers (e. g. NLopt) for min, f(x)

s.t.g(x) = Orequire an explicit Vg(x)

Including incorrectly computed derivatives (mostly gradients or Ja-
cobian matrices) <...>explains almost all the ‘failures’ of optimisa-
tion codes | see. (Idem.)

57/48

Hessian of a function

Hessian: Square matrix of second-order partial derivatives of a
twice-differentiable scalar function.

_of ... _0f
azf d Ox(M ox(1) Ox(M) Hx(d)
R o S R [
MNox® | . : ' :
OXVOXD] 1 of .. _0f
Ox(d) ox(M) Ox(d) Hx(d)

The Hessian is the transpose Jacobian of the gradient:
VEf(x) = VI[VF(x)]
- Vector input x + scalar output f = matrix V2

- If Vfis differentiable, sz is symmetric

58/48

Taylor series

o0

k) =33 (- (2

i=0

= f(x) £ D0 DWp2 4 0y 4

The at"-order approximation of f at x is a polynomial of degree a. The

discrepancy between f and its approximation is the remainder. For
somed € [0,1],

a

if(x) (a+1) X
o) =3 1109y P00 (aif)!‘”“) (dh)e

Forsmallh (h < 1,h — 0), h* 2% 0.

59/48

Example: Taylor series for CRRA utility

Linear approximation of CRRA utility with risk aversion 7:

XN

fx) = o) =x7" 1) =—mx",

Assume) = 1.5, approximate f around x, = 2.

f(2+ h)= f(xo) + f'(xo)h = 0.59 + 0.35h = Py(h)
~ Py(h) + 02 — 0.59 4 0.35h — 0.13h* = P,(h)
~ Py(h) + 0ol — 0.59 + 0.35h — 0.2742 + 0.064°
A~ 0.59 + 0.35h — 0.27h* + 0.06h> — 0.02h* ~ ...

60/48

Example: CRRA utility visualisation

1.0

0.5

-0.5
l

61/48

Example: CRRA utility visualisation

1.0

62/48

Example: CRRA utility visualisation

0.5
|

-0.5
l

62/48

Example: CRRA utility visualisation

0.5
|

-0.5
l

62/48

Example: CRRA utility visualisation

0.5
|

~

62/48

Example: CRRA utility visualisation

0.5
|

™~

62/48

Example: CRRA utility visualisation

0.5
|

-0.5
~~

62/48

Example: CRRA utility visualisation

- Degree-7 approx. /’___/

1.0

0.5
|

-0.5
l

62/48

Example: CRRA utility visualisation

2 - Degree-8 approx. //
Ln =

g

e]

o

LN

3 -

62/48

Reversing the Taylor series

- Taylor theorem: approximate f(x) using f(xo), f'(xo0), f"(Xo)
(‘derivatives = function values’)

- ‘function values = derivatives’ is also possible

- Polynomials are extremely easy to differentiate analytically:

dyn _ ,yn—1
X = hx

- Potentially up to n non-zero derivatives

- Use multiple values f(xo), . . ., f(x,) to construct a degree-n
polynomial approximation and calculate the derivative of the
latter

63/48

Derivatives through Taylor series

f"(x + ah)

flx+h) = f() +FO)h+ ——

W, «€lo,1]

Subtract f(x) and divide by h:

flx+h) —f(x)

F(x + ah)
h T

2

—(x) h=f'(x) + o(h)

Therefore, assuming that f”(x) is uniformly bounded
f'(x) = fip(x, h) + O(h) =~ fip(x, h) + @h (for small h), and
féo(x, h) is first-order-accurate.

This is the naive approximation from Slide 13!

*IM >0 sup|f’(x+ ah)| <M< .

64 /48

Symmetrical differences

To improve the accuracy, consider expansions at x + h:

Flct h) = 100+ FOoh+ Ve EUERR G g e o g
Flc— 1) = 100 — P+ e - E P g oy

2 6
Subtract (2) from (1):

Flx-+) = Fx =) = 2" () 4 LB s

6

Divide by 2h + generalised intermediate value theorem:

f(x+h) —f(x—h)

20 = () + =52, pe[-1,1]

65/48

Equivalence of extrapolation and weighted sums

The following is algebraically identical for higher-order accuracy:

- Extrapolating sequences of central differences at (x + h;),

(x = hy), ...
- Evaluating the function on the grid x + (—hy, —h,, h,, hy) and
combining the values with specific coefficients wy, ..., w,

This opens opportunities for parallel evaluation!

Accuracy: finding w; requires inverting a numerically unstable
Vandermonde matrix = we use (and benchmark!) a reliable
Bjorck—Pereyra (1970) algorithm.

66 /48

Second derivatives via central differences

) = < ()

Find such a linear combination of f(x — h), f(x), f(x + h) thatthe
coloured terms should cancel out:

Fx+h) = F(x) + f'(x)h + E8p2 - sy FTCkR) e

Fx— h) = () = £ (x)h + 2kt — Lo 4 Py

6

This weighted sum is the solution:

7 (o h) = f(x —h)— 2);(2x) +f(x+h)

67/48

Accuracy of second derivatives

The error order is the same as with f:

- f////(X)
12

f"(x) — feo(x, h) ~ h* = o(h’)

However, the defaultimplementation in many software products is
repeated differences:

nroy o Fx+h)+f(x—h) _fep(x+h)+ fip(x —h)
fil0 = 2h - 2h

- Approximating f”(x) via a 3-term f(j, is faster:
each f{, takes 2 evaluations

- More accurate with the optimal step size: the h* that is optimal
for f, is too small for f’}, (Slide 84)

68/48

Examples of stencils and weights

' = M =h7'[-1-f(x + 0h) +1-f(x +1h)]
- Stencil: b = (0,1), weights: w = (—1,1)

x+h x—h)
= DOHTOh) — [1 (x—) 4 1f(x + h)]
- Stencil: b = (—1 1)(symmetr1c),weights: w=(-1,7)
n _ fx=h)— zf(x)+f(x+h)

=
. Stencil: b = (1,0,1), weights: w = (1,—-2,1)

f _ f(x—2h)—8f (x—h)+8f (x+h)—f(x+2h)
CD4 12h
- Stencil: b = (-2, —1,1,2), weights: w = (—11—2, 52 %)

69/48

Numerical Hessians via central differences

Leth;:=(0...0_h 0...0)andx;_ :=x+h — h;.
~—
ith position

4 evaluations of f are required to approximate ngvia CD:

Vif(x) = [VI(Vf(x))], = Vieof (x) + O(h*) =

CFxes) = Fx—q) = F(x-) +F(x--) 2
= e + O(h?)

- The 4-term sum is as fast as the 4-term V"f(x”’f)z‘hw(x—hj)’
]

but guaranteed to be symmetric: Vi o, = Vi
- Symmetric repeated differences require 8 terms

- Accuracy implications are being investigated

70/48

Floating-point arithmetic

Computers convert inputs into 1's and 0’s for processing.

Real numbers can be written with an integer mantissa (=significant
digits) and an integer exponent (=magnitude):

integer
exponent

1.8125 = 18125 - 10 ~*
—_——

integer base
mantissa

The number18.125 has the same mantissa and a different exponent
(—3). To multiply by 10 (the base), move the decimal point:
1.8125 - 10 = 18.125.

Such numbers are called floating-point numbers.

71/48

Available precision on 64-bit machines

1bit 11 bits 52 bits
sign exponent significant digits

0 100000011011100000011010001100110011001100110011001100110011001

Computing the number from bits:

(—T)Sign . (1,signiﬁcand) . pexponent—2"°+1 _

=1.753198 - 2'9¥77108 — 28724 4

- 64-bit FP numbers represent5 - 1073%* ... 2 .10%8

- Are 64-bit calculations relatively accurate up to 103%?
No,onlyto1/2°> = 2.2 -107'®!

- Precision beyond ~16 decimal significant digits is lost

72/48

Computers have terrible precision

- Machine epsilon (¢n,n): maximum relative step between two
representable numbers, or €ach = 272~ 2.2-1071¢
Cfx = ZiﬂwintegertthernantEsaisSZzeros:OOO“‘OOOnNhenthe
least significant bit is flipped from 0 to 1, the mantissa becomes
000...001,and x — (1 4 €mach)X

Im({formula = mpg ~ disp, data = mtcars)

Coef: Estimate Std. Error t value Pr(>|t])
(Intercept) 29.599855 1.229720 24.070 ok
disp -0.041215 0.004712 -8.747 9.38e-10 ***

- Roundingerrors (e. g. if numbers have different orders of
magnitude), catastrophic cancellation, ill conditioning (high
sensitivity to small input errors)

- Input errors, user mistakes, programmer and hardware bugs —

purgamenta intrant, purgamenta exeunt
73/48

Example: low bit rates in early software

1993, 8-bit audio, 2001, 4-bit audio,
11025 Hz sampling 44100 Hz sampling
74 /48

Example: 8-bit audio in the 1990s

MH NW [m l H
“l — ™ l

The vertical position of the wave can take any of the 28 = 256 values;
1 point=1 byte.

11025 Hz =11 kilobytes per second of audio.

75/48

Finite precision in digital data

- The vertical position of the sound wave intensity is digitally
encoded as a number on a fixed grid:
- 4 bits = 2* = 16 positions (very coarse)
. 8 bits = 28 = 256 positions (coarse)
- 16 bits = 2'® = 65536 positions (CD quality)
- 64-bit FP numbers use a similar grid to allow = 2°* =~ 1.8 - 10"
numbers on the entire real line
. The amount of annual Internet trafficis > 10%' bytes—already not
enough even with positive integers
- Oneis limited to 64 bits per number unless they use special libraries

for arbitrary-precision arithmetic at the cost of extra memory and
speed: GMP, MPFR...

76 /48

Graphical representation of FP accuracy

- Intervals [1,2],[2, 4], [4, 8], ... are cut into 2°* ~ 4.5 - 10" equal
intervals; all numbers are snapped to the edges
- The gap between two representable numbers is proportional to
the number magnitude
- The rounding error is proportional to the number
- Relative rounding error range: [0 ... 1.1-107¢]
- Caution: round(3.5) = 4,butround(4.5) = 4dueto
rounding towards the nearest even number
- Worst case: the 1992 precision loss in the Patriot missile control
system = 28 soldiers died to a Scud missile
77/48

Insufficient precision example

a = 2752 # 4 503 599 627 370 496, 1/macheps
b=a+0.4

c=b+ 0.3

d=c+ 0.3

d - a # Question: is equal to what?

Answer: zero. (At least in FP64 precision.)

- The next number after 2°% representable by the machine is 2°2 41

- Everything less than 2°% + 0.5 is rounded down to 2°2
- Sort the inputs or use Kahan’s compensated summation to extend

the precision
- But2752+0.340.3+0.3+0.3+0.340.3+... = 2/52!

- Max.rel. error: €., /2, max. abs. error: |y| - €acn/2

78/48

Base-conversion precision loss example

Only finite sums of integer powers of 2 up to 2°% are stored losslessly

in computer memory:
1/2 = 0.5, = 0.1, —fine.
4/5 = 0.8y, = 0.11001100 . . ., = 0.1100, —infinite period.

With 52 bits, one can represent only 0. [1100] 1100 = 0.8 — 2 - 10 '
N——

X12
or

0.[11o00]1101 =0.8 +4-10".

——
X12

If 0.8 is saved as a number, it is read back as a different one:
print (0.8, 20) # 0.80000000000000004441.

79/48

Real case #2: catastrophic cancellation

The causal effect of a 1-euro debt change on the probability of
self-reported good health condition (GH) in the probit model
P(GH =1 Debt, ...) = ®(~,Debt + .. .):

OP(GH; =1) _ ®(9(Debt; +0.001) +...) — ®(yDebt; +...)
ODebt, 0.001

If the argument of ®(+) is too large, probabilities close to 1 are
predicted. If ¥ - Debt; + ... = 8.3, the relative error of 8%%':;0)
be ~ 17%.

can

Consequence: the error of the odds ratio is unbounded.

80/48

IHlustration of catastrophic cancellation

. P(GoodHealthi=0|Debt;)
Evaluated odds ratio P(CoodHealthj=0|Debtj+change)

¢] .
T | e True +Infinity
-] o Evaluated)
o |
o v
=
B o -
(%]
© O
©
(@]
& —
~
o
I | | | T |
0.0 0.1 0.2 03 04 05

Change of debt

Probit breaks at X’ 3 = 8.3; logit breaks at X’ 3 = 36.8.
81/48

Total error function properties

On the log-log scale,
- The slope of the left branch is the differentiation order m
(times —1)
- The rounding error of the difference is divided by h™

- The slope of the right branch is the accuracy order a
- The truncation error is approximately f”-- /a! times h”

82/48

General step-size selection

Result: at"-order-accurate m™ numerical derivatives have:

- Optimal step size h, ¢ “R/€mach

. Approximation error o< €™ o¢ h? o €macn/h™ with equal

order of truncation and rounding components

- The total error at the optimal h* is O(elr{azch) for one-sided and
O(fi]/;ch) for central differences

- In 64-bit precision, f{y, is accurate only to ~7-8 decimal digits, and
f¢p to ~10-11 digits at most

A . 1/4
- Second derivatives and Hessians: h¢p oc €
1/5 ..
- 4th-order-accurate CD: hép 4 €n<ach (~12-13 digits)

- Hard limit: impossible to have > 16 accurate decimal places on
64-bit machines without extra effort

83/48

Is repeated differencing dangerous?

Options for f(x): [e=n=2ctTlxth) rf(gD(XJ"h)z_hféD(x_h).

Surprisingly, both have the same maximum attainable accuracy,
o(Lf:ch) (7-8 digits), with hf o e/* . However, using hép o e/

mach* mach
resultsinan O(e nfach) error, i. e. onIy 5-6 accurate digits!

Recall the tip: multiply h¢p bye ~ 20.

mach

Total error of

o f'
10-12 1 ° f"

84/48

Paradigms for step-size search

1. Theoretical (plug-in expressions)

2. Empirical (finding the minimum of the total error)

My package, pnd, provides multiple algorithms (currently under
active feature implementation and testing).

Analogy: Silverman’s rule-of-thumb bandwidth vs. data-driven
cross-validated bandwidth in non-parametric econometrics.

85/48

Naturally noisy functions

Noisy function: many local optima and strong abrupt changes of
curvature.

In optimisation, accurate derivatives of noisy function are useless
(local features obscure global optima).

Although hfy = /1.5|f /f"”|€mach o< 1/f", use larger step sizes to

guess a better trend.

\Sy Sum(|resid|) Sum(|resid|*0.5) Sum(log(lresidl))!

86/48

Relative or absolute step?

- The optimal step size, hip = v/ €mach - 1.5/F(x) /" (x)],
on the value of x only through f(x) /f"'(x)

- However, relative step x - h¢, is often used to eliminate the
problems of units of measurement for large x|

. Ifx =102 and h = 10~*, argument-representation errors appear:
|[X + h]epes — (x + h)| = 2-1075 #£ 0 (Slide 78)

- Ifx=10"%andh =10"* x — h < 0;bad ifdom f = R*™*: log x,
JX... Slide 6)

- The magnitude of x may be informative of the curvature change,

f///()

- Common practice: choose Xmin = 107%; for [X| < Xmin, use step
size hand for [x| > Xmin, use step size |x|h
- Helps only with large x, not small x such that |f"”’(x)| > 0

87/48

Finite-difference stencils and weighs

Use £dCoef () to obtain the coefficients thatyield an
approximation of the m™ derivative with error O(h*) on the smallest
sufficient stencil.

fdCoef(deriv.order = 2, acc.order = 4)

$stencil: -2 -1 0] 1 2

$weights: x-2h x-1h x x+1h x+2h
-0.08333 1.33333 -2.50000 1.33333 -0.08333

Arbitrary stencils are supported; the resulting coefficients yield the
maximum attainable accuracy:

fdCoef(deriv.order = 1, stencil = c(-1, 0, 4))%weights
x-1h x x+4h
-0.80 0.75 0.05 # Second-order accuracy

88/48

Overhead in theory

Using mores cores requires spawning processes and copying memory
pages—there are fixed costs.
= CPU warm-up

Parallel overhead
—— Per-core overhead

i
I

i

I

i

I

i

I

i

!

' —— 1core
E 2 cores
' 4 cores
E —— 8cores
i
|
I
I
I
I
I
|
I
i
I
i

Time spent

Task size

89/48

Overhead in theory

Using mores cores requires spawning processes and copying memory
pages—there are fixed costs.
= CPU warm-up

Parallel overhead
—— Per-core overhead

|
|
|
|
|
|
|
|
|
!
|
1 —— 1core
|
|
|
|
|
|
|
|
|
|
|

€ 1+ —— 2cores

3 4 cores -
(%] ~
) —— 8 cores -

£ -

[=

Task size

89/48

Overhead in theory

Using mores cores requires spawning processes and copying memory
pages—there are fixed costs.
= CPU warm-up

Parallel overhead
—— Per-core overhead

—— 2cores
4 cores

)
I

)

I

'

I

'

I

'

|

I

! —— 1core
I

)

I

i

. —— 8cores
i
'
|

Time spent

Task size

89/48

Overhead in theory

Using mores cores requires spawning processes and copying memory
pages—there are fixed costs.
= CPU warm-up

Parallel overhead
—— Per-core overhead

|
|
|
|
|
|
|
|
|
!
|
1 —— 1core
|
|
|
|
|
|
|
|
|
|
|

€ 1 —— 2cores ~
g 4 cores _—
©n _—

) —— 8 cores -

£ - T
= — —T

Task size

89/48

Overhead magnitude

- Requesting 2 cores for a parallel job: ~0.01s
- 0.3-0.4 s on Windows due to its inability to fork effectively!

- Extra per-core time with pre-scheduling: ~0.005s

- Plus extra time losses for communication between cores

- If one evaluation of f takes <0.01s, compare the gains: reduction
of the number of tasks vs. overhead per core

- If one evaluation of f takes 0.005-0.010 s, compare the gains:
reduction of the number of tasks vs. overhead per core

Timeperf 0.002 0.005 0.01 0.02 0.05 0.1 > 0.2
Use cores 1 23 4 8 12 16 > 24

Long gradients = always parallelise! And always benchmark!

90/48

Overhead of pnd

How faster is calculating (XH')Z# by hand than running dozens

of checks for user inputs?

Each call of Grad () adds 0.5 ms of overhead due to the
infrastructure; it increases with dim x. (To be improved!)

Compare the overhead of computing V¢, fi
f(x) == 9™ X2 4 4sinx + 1.1%in seconds

=1

dim X 1 10 100
Overhead 0.0005-0.0010 0.0008-0.0010 0.0038-0.0041

Is it acceptable in your practical application?

91/48

Finding approximations via interpolation

To calibrate 1, you run thousands of simulations and compute the
goodness of fit f(n). Yougetn = (0.1,0.2,0.4,0.8,0.9),

f(n) = (0.2,0.4,0.5,0.8,0.7), but you want to guess f and f’
aroundn, = 2/3.

fdCoef (0, stencil = (n - n0@))%$weights %*% f
fdCoef (1, stencil = (n - n0B))%weights %x% £

Weights for f: (0.23, —0.56, 0.69, 0.98,
—0.34) = f(2/3) =~ 0.71.

Weights for f": (—1.36,3.51, —5.40, 3.30,
—0.05) = f'(2/3) ~ 1.04. e e N

00 02 04 0.6 08 10

02 04 06 08

92 /48

Parallel step-size selection: light functions

If there are no memory-heavy operations (cloning pages, passing
data to child processes), the run time is roughly proportional to the
number of cores.

f(x) <- {Sys.sleep(s); sin(x)}?

Times for the Stepleman—-Winarsky algorithm to terminate in
7 evaluations /3 iterations. Ideally, 3 iterations =3 parallel calls =
thrice the time of one call.

S 0.001 0.01 0.1 1

1core 0.008 0.072 0.702 7.003
2cores 0.038 0.091 0.456 4.061
3cores 0.043 0.092 0.368 3.071

93/48

Parallel step-size selection: heavy functions

Smoothed empirical likelihood with missing
endogenous variables (Cosma, Kostyrka,
Tripathi, 2025). Maximising SEL + computing
VZ-based std. errors via BFGS on 4 cores.

g4 <- function(x) Grad(SEL, x = x,
acc.order = 4, cores = 4)
optim(par = c(1, 1), SEL, gr = g4, method = "BFGS")

Method Ord. Time,s ||VSEL|| Evals Iters

built-in 2 21438 3.6-107* 46 10
pnd 2 13415 21-1077 37 10
pnd 4 16+29 33-10°8 3210

94 /48

Available algorithms

i > w N

. Plug-in

Curtis—Reid (1974) and its modification (2025)
Dumontet-Vignes (1977)
Stepleman—Winarsky (1979)

Mathur (2012)

95/48

Improvements for the CR algorithm

1. Estimate the correct truncation error order with 4 parallel
evaluations and use the theoretically correct target ratio

- Instead of ‘truncation error = rounding error’, use the optimal
‘truncation error = rounding error halved’ rule

2. Obtain ¢, , with algorithmically chosen hg;, , times 120
. & 3 times more accurate than theoretical

96 /48

Improvements to the AutoDX algorithm

Developed by Ravishankar Mathur (2012, Ph .D. thesis).

- The finite differences may be evaluated on the entire gridon a
multi-core machine

- The user may plot the behaviour of the approximated total error
as an added bonus

97/48

Are data-driven steps good for sin x?

10°0 ® Theor. opt. ® Dumontet-Vignes #® Mathur B’
102 - @ mod. Curtis-Reid(2) ® Stepleman-Winarsky

1004
10°6 |
10°8

10710 —
10812

10014 - e RIRELY Total error
\ | T | | | T | | |
103 10%2 10" 100 10 10~2 103 104 1075 106

- Atdifferent values of x, the rankings of methods change

- For other functions, the rankings are different

98/48

Sensitivity of the error to the step size

Choosing a slightly sub-optimal step size is not as scary. For f = sin,
hép, = +/1.5] tan x|€macn is unbounded —a fixed h can work better.
Safest option: invoke Mathur’s method with a plot.

Example: diagnosing f(x) = expxatx = 1.

99/48

Comparison of median run times

Grid: 9000 exponentially spaced points between 10~2 and 10°
(exception: 3000 pointsin [1072...10"] for exp x).

Unit: millisecond per step size per grid point + derivative estimation.

Func. hip, |x[\/émach CR CRm2 CRm4 DV SW M
sin x <0.01 <0.01 0.18 016 0.20 0.46 033 170
exp x <0.01 0.02 0.15 0.15 015 0.26 018 172
log x <0.01 0.01 0.5 0m 015 017 0.27 2.09
VX <0.01 <0.01 0.16 0.Mm 015 0.16 014 213
tan~'x <0.01 <0.01 0.14 0.M 017 019 042 1.69

100/48

Comparison of median absolute errors

Error: |f'(x) — f¢p ,| for 9000 exponentially spaced points between
102 and 10° (exception: 3000 points in [T0~2...10'] for exp x).

Short exponential notation: 5.6e-9=5.6 -10~°.

Func. hi, Xl\/@man ~ CR CRm2 CRm4 DV SW M

sin x 5.7e-11 2.6e-09 1.2e-09 1.2e-10 2.3e-11 1.1e-09 3.0e-11 5.1e-10
exp X 1.5e-11 2.6e-08 2.2e-10 5.7e-11 1.3e-11 3.7e-09 1.4e-11 2.7e-09
log x 1.3e-12 0.0e+00 5.6e-12 1.7e-12 1.6e-13 1.3e-11 5.3e-13 1.0e-10
VX 2.1e-12 2.7e-10 9.3e-12 2.4e-12 2.4e-13 3.7e-11 8.2¢-13 1.5e-10
tan”'x 6.8e-13 5.9e-11 3.5e-13 2.2e-13 2.7e-14 7.8e-13 1.6e-13 9.6e-12

101/48

Logic behind the best methods

- Curtis—Reid (1974) + my modification #2: use 4 available
intermediate points and function values from truncation and
rounding error estimation to obtain a 4™"-order-accurate
estimate (unlike 2)

- Stepleman—Winarsky: the truncation error should be quartered if
the step size is halved = start at a step size larger than the best

guess and halve it until the decrease is substantially different
from 2 due to rounding errors

- ladded a safety step for checking finiteness and extra warnings for
edge cases

- Mathur: SW-like evaluation for many points simultaneously +
diagnostic plots available

102/48

	Motivation and empirical applications
	Approximations of analytical derivatives
	Step size effect on the approximation error
	Step-size selection algorithms
	Showcase of <pnd>

