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Motivation and empirical applications



Contribution

| extend the existing numerical-methods literature and software
ecosystem by:

1. Creating the open-source R package pnd for fast, parallelised
numerical differentiation
- First open-source parallel Jacobians, Hessians and
higher-order-accurate gradients

2. Deriving analytical error bounds and optimal step-size rules for
higher-order-accurate derivatives and second-order-accurate
Hessians

3. Implementing previously proposed algorithms of step-size
estimation, benchmarking their relative performance, and
suggesting improved modifications
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Which step size are we talking about?

Cradient-based optimisation
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Computing slopes

2/48



Which step size are we talking about?

Cradient-based optimisation Computing slopes

2/48



Which step size are we talking about?

Cradient-based optimisation Computing slopes

2/48



Which step size are we talking about?

Cradient-based optimisation Computing slopes

2/48



Which step size are we talking about?

Gradient-based optimisation Computing slopes
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Which efficiency are we talking about?

- Huge data sets, billions of parameters, approximate solutions

- Big data sets, 1-1000 parameters, exact solutions <= This one.

Efficiency: parallelisation and full user control to reduce the
guesswork carried out by the computer.

Accuracy: crucial for inference in science (inaccurate numerical
Hessians = wrong standard errors = wrong conclusions about
significance)

pnd can handle large Hessians, but the user should probably avoid
inverting them (there could exist dedicated stable procedures).
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Motivation and research question

- Researchers rely on optimisers, algorithms, black boxes etc. to
‘solve’ their models and carry out inference

- The end resultis highly dependent on the solver quality

- Most popular modern optimisation techniques use numerical
gradients for minimisation or maximisation

However, most software implementations yield inaccurate and slow

numerical derivatives.

How can we attain the hardware-dependent
accuracy bound for numerical derivatives?
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Consequences of inaccurate derivatives

- Inexact solutions, values not at the optimum
- Wrong asymptotic-approximation-based inference

- No causal interpretation or specification testing
- Wrong standard errors and p values in non-linear models
- Worst case: negative Hessian-based variances

- Methods based on empirical likelihood (EL) forego Hessians for
inference, but converting a model into an EL-based one is non-trivial
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Example from a financial application

Simple AR(1)-GARCH(1, 1) model for NASDAQ log-returns,

1990-1994:

re = |+ pri_y + o:Us,

2 2 2
o, =w+al;_, + Bo;_,

Coefficient Est. t-stat t-stat t-stat

(rugarch) (fGarch) (manual)
7] 0.0007 2.34 2.31 2.33
P 0.24 7.77 7.73 7.73
w X 10° 0.0098 NaNor 65 3.09 3.08

default fallback

o 0.13 1.1 4.27 4.26
ﬁ 0.73 39.6 10.9 11.0
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Example from seasonal adjustment

Goal: estimate the slope of the seasonal component in CO, levels via
the model CO, = ('Spline;(x) + 7 sin(5z525—7st — 9).

365.25-86 400

1960 1965 1970 1975 1980 1985 1990 1995
L | | | | | | ]
3 — = Spline fit
3] —— Spline + trigonometric fit

Atmospheric CO2, ppm
320 340

f T T T T 1
-2e+08 0e+00 2e+08 4e+08 6e+08 8e+08

Seconds since 1970-01-01 (POSIX)
Caveat: the time in the data based is encoded as POSIX time
(seconds since 1970). Range of t: —347155200 ... 880934400.

Relative error: ~100% (nonsensical dCO, /dx within the range)!
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Gradients, Jacobians, Hessians in economics

- Gradient: marginal effects and causal interpretation

- Itis common to numerically estimate the response of Y to a small
change X in large systems of interdependent equations

- Hessian: standard errors in semi-parametric and parametric
models (non-linear least squares, GMM, maximum likelihood:
probit, logit, heckit...)

- Jacobian: must be supplied in constrained-optimisation
problems (optimisation subject tog(6) = 0, h(#) > 0)

- Numerical optimisation with steepest-descent / hill-climbing
methods

Necessary in any model that is not linear in parameters.
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You have encountered numerical algorithms

12 heckman — Heckman selection model

. use https://www.stata-press.com/data/r18/twopart

. heckman yt x1 x2 x3, select(zl z2) nonrtol

Iteration 0: Log
Iteration 1: Log
Iteration 2: Log
Iteration 3: Log
Tteration 4: Log

likelihood = -111.94996
likelihood = -110.82258
likelihood = -110.17707
likelihood = -107.70663 (not concave)
likelihood = -107.07729 (not concave)

(output omitted )

Iteration 36: Log likelihood = -104.0825
Heckman selection model Number of obs = 150
(regression model with sample selection) Selected = 63
Nonselected = 87
Wald chi2(3) =  8.84e+08
Log likelihood = -104.0825 Prob > chi2 = 0.0000
yt Coefficient Std. err. z P>|z| [95% conf. intervall

yt

x1 .8974192 .0002164 4146.52 0.000 .896995 .8978434
x2 =-2.525303 .0001244 -2.0e+04 0.000 -2.525546 =2.525059
x3 2.855786 .0002695 1.let+04 0.000 2.855258 2.856314
_cons .6975003  .0807873 7.68 0.000 .5195604 .8754402
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You have encountered numerical algorithms

12 heckman — Heckman selection model

. use https://www.stata-press.com/data/r18/twopart

. heckman yt x1 x2 x3, select(zl z2) nonrtol

Iteration 0: Log
Iteration 1: Log
Iteration 2: Log
Iteration 3: Log
Iteration 4: Log
(output omitted )
Iteration 36: Log
Heckman selection
(regression model

likelihood
likelihood
likelihood
likelihood
likelihood

likelihood
model

=111.94996
-110.82268
= -110.17707
= -107.70663
= -107.07729

= I -104.0825

with sample selection)

h 4

(not concave)
(not concave)

Number of obs

Selected
Nonselected

Gradient #1: quasi-Newton
optimisation direction

150
63
87

8.84e+08
0.0000

.0002164
.0001244
.0002695
.0907873

Log likelihood = -104.0825
yt Coefﬂ1c1ent Std. err.
yt
x1 8974192
x2 -2.525303
x3 2.855786
_cons 6975003

4146.52
~2.0e+04
1.1le+04
7.68

P>|z|

0.000
0.000
0.000
0.000

[95% ¢enf. intejvall
Y —Gradient #2: He55|an based SE from this at this

.886995
-2.525546
2.855258
.5185604

.8978434
-2.525069
2.856314
-8754402
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Existing literature / software

- Gilbert & Varadhan (2019). numDexiv: Accurate Numerical
Derivatives.
cran.r-project.org/package=numDeriv

- Non-parallel version without vignettes or derivations

- Gerber & Furrer (2019). optimParallel: AnR Package
Providing a Parallel Version of the L-BFGS-B Optimization
Method. The R Journal 11 (1).
cran.r-project.org/package=optimParallel

- Limited to the built-inoptim(method = "L-BFGS-B")

- Papers on computer algorithms from the 1970s
- Hong, Mahajan & Nekipelov, (2015, JoE). Extremum estimation

and numerical derivatives.
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cran.r-project.org/package=numDeriv
cran.r-project.org/package=optimParallel

Selling pnd

Compare the software: numerical derivative error for f(x) = sinxon
the evaluation grid log,, x ~ Unif[—3, 6].

® pnd CRm2 ® NumPy ® Scilab Total error
1072 4| ® pndSW @ SciPy

4 | numDeriv @ numdifftools

102 10 107 10° 10 102 10° 10* 10° 10°

*Some entries are cheating and do better by being slower and computing more
derivatives —impractical for heavy-duty applications.
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pnd = numDeriv + optimParallel (+ tweaks)




Approximations of analytical derivatives



Derivative of a function

Derivative: The instantaneous rate of change of a function.

f'(x) = — = lim

dx h—0
Assume that f is differentiable and
therefore continuous.

df f(x+h) —f(x)
h

f'(x) is the slope of the tangent line to the
graph atx.

lllustration: f(x) := x*, f'(x) = 3x%.

f(1) =1,f'(1) = 3. The tangent equation
atx = 1is3x — 2.




Naive numerical derivatives

In the definition

. f(x+h) —f(x)
/ -
Fix) := Jim, h ’
remove the limit to obtain a forward difference:
f(x+h)—f(x
Folx, ) = R )
Choose a sequence of decreasing step sizes h; (e. g.
{0.1,0.01,0.001, .. .}), observe the sequence
fio(x,0.1), fip(x, 0.01), fi5(x, 0.001), . . . converge to f’.
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Naive numerical derivatives in practice

Mathematically, ffp(x, 0.1), fip(X, 0.01), fip(x, 0.001), .. . converges
to f'(x).

Forward diff.

Error
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Naive numerical derivatives in practice

Mathematically, ffp(x, 0.1), fip(X, 0.01), fip(x, 0.001), .. . converges
to f'(x).

Forward diff.

Error
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Naive numerical derivatives in practice

Mathematically, ffp(x, 0.1), fip(X, 0.01), fip(x, 0.001), .. . converges
to f'(x). But not true in practice!

Forward diff.

Error

0™ 10" 10™ 10" 10" 10® 10° 10* 10 10° 10
Step size



Graphical illustration of accuracy

—_— f

---- True tangent
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Graphical illustration of accuracy

—_—
---- True tangent
— — Forward diff.

Cf(x) =%, x0 =1
. f’(xo) =3
- Stepsizeh = 0.2

- fio(x0,0.2) = 3.64
Error =~ 21%
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Graphical illustration of accuracy

—_— f

True tangent
Forward diff.
Central diff.

- f(X) =%, x0 =1
. f’(Xo) =3
- Stepsizeh = 0.2

io(X0,0.2) = 3.64
Error =~ 21%

- f{5(x0,0.2) = 3.04

Error~1.3%
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Second-order accuracy of derivatives

Central differences are symmetrical around x:

ol ) = LT

fy is more accurate than f/,:*
P10 = fiolx, ) = =5~ — 2 = o(h)
P10 = ol h) = = & — B = ()

If f(x) has not been evaluated, computing f{, and f{, takes the same
amount of time —use 5.

If f(x) is already known, CD requires 1 more computation than 5,
which is 2 times slower — use f/;, for costly f.

* Assuming f”" and "’ are uniformly bounded.
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Improvements via Richardson extrapolation

Since numerical derivatives are based on polynomial approximations
of functions, one can reduce the truncation error iteratively.

Romberg’s method / Newton—Cotes formula:
1. Compute f5(x, hy) and f¢p(x, h;) for two different step sizes
hy > h,
2. Develop their Taylor expansions:
féo(x, ) = f'(x) + ah* + ...
flo(x, hy) = f'(X) + ¢;h* + . ..
3. Find such weights w; + w, = 1that w;¢; + w,c, = Osothatthe
O(h?) error term vanishes, yielding
afep(X, ) + cafép(x, hz) = f'(x) + O(h*)
4. Iterate furtherwith by > h, > h; > ...andh;/hi ;s =r > 1to
get a better approximation
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Richardson-like extrapolation illustration
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Richardson-like extrapolation illustration
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Richardson-like extrapolation illustration
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Richardson-like extrapolation illustration
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Richardson-like extrapolation illustration
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Richardson-like extrapolation illustration
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Higher-order accuracy of first derivatives

Better accuracy is achievable with more terms in the sum. Carefully
choose the coefficients to eliminate the undesirable terms:

;=) + flxth)

2
. " +0(h?)
floa
pro fxz2h) = sf(x—h) £ 8f(xth) = fx+2h) o)
12h
o

For the same small h, the error of f(;, ,, O(h*), is generally smaller
than that of f(;, ,, O(h?). + Parallelisation!
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Higher-order accuracy of m™-order derivatives

Stencil: strictly increasing sequence of real numbers: b; < ... < b,.
(Preferably symmetricaround O for the best accuracy.) Example:
b=(-2,-1,1,2).

Derivatives of any order m with error O(h®) may be approximated as
weighted sums of f evaluated on the evaluation grid for that stencil:
X+ bh,....,x+ b,h.

With enough points (n > m), one can find such weights {w;}_, that
yield the a"-order-accurate approximation of f("), wherea < n — m:
d"f
dxm

(x)=h"" i wif (x + bih) 4+ O(h")

i=1
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Efficient parallelisation of gradients

Example: Vf(x),dim x = 3, stencil b = (—2, —1,1,2) for 4"-order
accuracy, same step size h. Total: 12 evaluations.

1

‘ W-|:— W2: 8 !

x| f(x — 211’71) f( h1)2 f(x I— 1’1'12) f(x :‘ 21"112)
x| f(x —2hy) f(x—hy) f(x+hy) f(x+2h,)
( ) f(x )

(x
xC) | f(x —2h3) f(x —hs) f(x+hs) f(x+ 2hs

-

- Create alist of length 12 containing x + bjh;

- Apply f in parallel to the list items, assemble
{{f(x+ b))}, };:1 in a matrix

- Compute weighted row sums
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Step size effect on the approximation error



Real case #1: numerical derivative failure

- An economist is modelling some variable Y thatis linear in the
GDP:Y :=1-GDP+¢g(...)+ U

- OE(Y | ...)/OGDP = 1, but they use numerical derivatives

- Lux GDP is 80 bn € = the gap between two representable
numbersis 8 -10'°/2°* ~1.7-107°

- Step size: 1078 (from the literature)

[8-10" +107%] — 8-10"
VoorY ’copm ~ 10-8

- [8-10" 4+107%] = 8- 10" because107% < 1 - 1.7 -10° = the
numerator is zero (cf. Slide 14 plot)

—

- Error: the computer returns 9Y /OGDP = 0 instead of 1!
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Total error in numerical derivatives

Step size selection is critical for accuracy:
- htoo large — large truncation error from the truncated
Taylor-series term (poor mathematical approximation)

- htoo small — large rounding error (poor numerical
approximation): catastrophic cancellation, division of something
small by something small, machine accuracy always limited by

€mach

Finding the optimal h* to balance these two errors is possible.
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Analytical error bounds for central diff.

Computing f results in a roundingerror: f(...) := me(. ) + €round-

[F(x + h) — f(x — )] — [freea(x + h) — Frpsa(x — h)] = e, —e_

true difference computer evaluation
Rounding-error numerator bound:* |e; — e_| < |f(X)|€mach-
0.5(e; —e_)

"
F(x) — (i)~ 6(X) o+ 250
overall nun:.rderivA error S—— Y

truncation rounding

*f(x + h), f(x — h) must have the same magnitude (binary exponent).
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Total error composition

N M O

- —- Truncation
Rounding
—— Total

108 107

Step size
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Optimal step size

Total-error function: conservative absolute bound (after several
harmless simplifications).

Eco(x, h) := F7(x )|h2+05|f( )|€machh ™

If”( )l

EFD(X7 h) = h + |f( )| malchh_1

Optimal step sizes that minimise it:

B ET) 200

Wﬁmacm WEmach
Therefore, hiy o< en{ach and hfy o< emach (machine-dependent).
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Optimal step tips and tricks

Rules of thumb to help one save time and obtain more useful
quantities once they have determined h{p ,"
1/4 1/12

- Since hgp , o €macns o 2/ D4 X Emach-
Multiply hCD , by~20 forareasonable step size for second

derivatives (f” )
- Logic: higher derivation order = division by h* instead of h =
higher rounding error = increasing h* to reduce it

% 2/15
- Similarly, hep , =oc €machr”’co 2/epa X Ernach-

Multlply h¢p 2 by ~100 fora reasonable step size for
4th_order-accurate first derivatives (f’ but better)

- Logic: higher approximation order = more points = smaller
truncation error at hip , = increasing h™* to reduce the rounding
error
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Optimal step troubleshooting

- Ifthe function is quasi-quadratic, f” ~ 0,f"" ~ 0, ..., then, the
step-size search might be unreliable
- Happens at the optima of likelihood functions in large samples
- Solution: use the fixed step \/€mach max{|x|,1} after checking
diagnostic messages
- Typical error: step size too large after dividing by f”, solution at the
search range boundary, or solution greater than |x|...

- Ifthe function is noisy / approximate, multiply h¢y, , by 10 per
3 wrong digits of f
- If f(x) has numerical root search, optimisation, integration,
differentiation, etc., |f(x) — f(x)|/|f(x)| > 0 by more than emach
- In general, replace €mach in the total-error formula with the
maximum expected relative error = h becomes larger with more
wrong decimal digits
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Total error in noisy functions

10° — i !
107 : i
107 !
107 i i
10 — E . Total error of
10710 - : ‘e accurate f
' o 3-wrong-digit f
107" - i . ie 6-wrong-digit f
| T T T T 1 T T T |
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Step-size selection algorithms



Using plug-in estimates of {"

Since the optimal h* for f/; depends on the true f",

1. Compute fZ(x, h) using any reasonable h o< €2, (e. g. naive
values like or 0.001 max(1, |x|))

2. Compute ity = {/1.51F(x)|emaen/F24(x. )|
- Dumontet-Vignes (1977) proposed an iterative search algorithm
- Works for all differentiation and accuracy orders with appropriate
changes

- Reassemble the available values of f({£h, £2h}) intoa
4™-order-accurate f{p ,

Grad (FUN f, x = x0, h "plugin", hO = le-5)
Grad(FUN = £, x = x0, h = "DV")
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Objective function to minimise

Absolute Error

f(

x)

1e+01

1e-05

1e-1

=x*+cosx+exp(x —1), xo=m/4, f'(x)=7

—— Truncation
—| —— Rounding
| —— Total

[ I I I I I
Tle-14 Te-1 1e-08 1e-05 Te-02 1e+01

Step size
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Controlling the error ratio

Observation: when the truncation error and the rounding error are
similar, the total error is minimal.

Curtis & Reid (1974) proposed choosing such h that

over-estimated truncation error e,

: € [10,1000] (aim for100)
rounding errore,

Estimate the truncation and rounding errors separately:
- e(x, h) = |flo(x, h) — fis(x, h)| —too conservative
- &(x, h) = 0.5|f(x)|€mach/h
Since ¢, is over-estimated, this aim ensures thate, ~ e,.
Grad(func = £, x = x0, h = "CR")
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Curtis—Reid algorithm visualisation

— |—e— Truncation
$ _{—e— Rounding
— 2 —e— Total
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o™
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= _
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1 - 1
<2 [ | | I | |
2

1e-15 1e-12 1e-09 1e-06 1e-03 1e+00

Step size
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Error-ratio control improvement

- Larger stencil + parallelism = more accurate truncation estimate

- | correct the estimates and the target ratio

- With 4 evaluations, f(;, , can be computed from existing values
= multiply the aim by e;:c/gs ~ 120

- Positive externality: the step search yields more than one asked for

Grad(f, x = x0, h = "CRm")
gradstep(f, x = x0, method = "CRm",
control = list(acc.order = 4))
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Curtis—Reid 2025 improvement visualisation
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Controlling the truncation-branch slope

Stepleman & Winarsky (1979) and Mathur (2012) proposed similar
algorithms based on the idea of descending down the right slope of
the estimated truncation error:

- The slope of the right branch of the total erroris a
- Choose a large enough hy, set h; = 0.5hy, get the truncation error
estimate from f{y(x, hy) and fl5(x, ho)

- Continue shrinking while the slope of &; is &~ 2 (accuracy order);
stop when it deviates due to the substantial round-off error

- Never deals with the indeterminable round-off

Grad(f, x = x0, h = "SW")
Grad(f, x X0, method = "M")
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Slope-control algorithm visualisation

Estimated error vs. finite-difference step size

assuming rel. condition err. < 111e-16, rel. subtractive err. < 111e-16

x
2 g o Truncation x Rounding o Total
S 3] B
c —
= n ° 0
e 8 ®
= @ o
@ (<]
U; -
“ _
T o
- T
£ 2
E 7 . .
2 2 e Good e Fair e Invalid
wl 1 p—
(]
- T T T 1 1 1 1

le-14  1e-11  1e-08  1e-05 1e-02  1le+01  Te+04
Step size
Good: slope &~ 2 + 1%, invalid: slope > 0, but slope % 2.
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Showcase of pnd



Compatibility with numDeriv

numDeriv remains the most popular R package for non-parallel
computation of accurate derivatives without step-size selection.

Simply replace the first lowercase letter with an uppercase one.

numDeriv pnd
grad(f, x) Grad(f, x)
jacobian(fvector, x) Jacobian(fvector, x)
hessian(fscalar, x) Hessian(fscalar, x)
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Example #1: optimisation with gradients

dim x

f(x) := Z(X'Z + 2sinx; + 1.19)

i=1

library(pnd)
f <- function(x) sum(x”2 + 2%sin(x) + 1.1”x)
initval <- runif(10, -1, 1) # dim X = 10

optim(initval, £, method = "BFGS")

g <- function(x) Grad(f, x) # length(g) = 10
optim(initval, £, gr = g, method = "BFGS")

# Custom step and higher accuracy

h <- gradstep(f, initval, method = "plugin")$par

g2 <- function(x) Grad(f, x, acc.order = 4, h = h«10,
elementwise FALSE, vectorised = FALSE,
multivalued FALSE)

optim(initval, £, gr = g2, method = "BFGS")
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Example #2: Jacobians and Hessians

dim x

f=>_

i=1

f2 <- function(x)
Jacobian(x = 1:3,

0.5403023
2.7182818

# sine
# expo

f3 <- function(x)

Hessian(f3, x = 1:

# 0.0817 0.0240
# 0.0240 0.0817
# 0.3681 -0.2624
# -0.0453 0.0323

sin x;
expx; )’

c(sine
expo

dim x

ﬁ:::I]:ﬁnxi
i=1

sum(sin(x)),
sum(exp(x)))

f2, report = 0)

-0.4161468 -0.9899925
7.3890561 20.0855369

prod(sin(x))
4, report = 0)

0.3681
-0.2624
0.0817
0.4951

-0.0453
0.0323
0.4951
0.0817
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pnd

- 63 foreseen errors (so far)

- 26 foreseen warnings (as of

today)

- 8 possible configurations of

function properties and

capabilities

- Multi-stage input checks

with error handling and
possible parallelisation

- The user may supply
arguments to ensure no
run-time or silent error

User-friendliness and thoroughness of pnd

numDeriv
- 19 foreseen errors
- Zero foreseen warnings

- Only 3 possible function
configurations

- One-stage input check only

one error check

- Impossible to obtain
Jacobians for certain
functions (e. g.

f(x) := (sinx, cos x)')
- No user controls
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Example of error informativeness

pnd is more verbose and provides direct suggestions whatto do in
case the user has provided incompatible inputs.

2 <- function(x) c(sin(x), cos(x))
grad(f2, x = 1:4)
# Error: grad assumes a scalar valued function.

Grad(f2, x = 1:4)

# Use 'Jacobian()' instead of 'Grad()'
# for vector-valued functions to obtain
# a matrix of derivatives.
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Error of step-selection methods for f(x) := sin x

Theoretically optimal: ¥/ ﬂgﬁ% = /1.5/ tan X|€mach

Rule of thumb: \/€pach - min(1, |x|). Curtis—Reid: 1974 version +
2 modifications (2025). Evaluation grid: x € [107%,10°].

Absolute total error
=

_| ® Theor. opt. Plug-in ® mod. Curtis-Reid(2)

Rule of thumb @® Curtis-Reid ® mod. Curtis-Reid(4)

Total error

Step size



Project support

= 0

& Fifis/ pnd (F ¥ Fork O @

<> code ( Issues I Pullrequests (D Actions O Security [+ Insights

¥ main ~ ¥ © Go to file <> Code ~ About

R package for accurate and quick
numerical derivatives of arbitrary
order

@) Fifis Auto-generated documentation update
B github
B R

inst

man

tests

< O s Q& B8

vignettes

https://github.com/fifis/pnd



https://github.com/fifis/pnd

Demonstrations for another time

- Computing marginal effects in highly non-linear computationally
heavy models with big data

- Computing accurate standard errors in conditional-volatility
models (no more NaN in GARCH!)

- Choosing the optimal step size for complex multi-dimensional
maximisation

- Handling f thatis not accurate to the last digit
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Further work -1

- Finish the formal part, test the suggested algorithm
improvements

- Upload the R package to CRAN as pnd (currently tested on
github.com/Fifis/pnd)

- Improve the Dumontet-Vignes and Mathur algorithm by
returning higher-order-accurate derivatives from available
calculations

- Add facilities to compute higher-order-accurate derivatives from
previous candidate step sizes

- Implement complex derivatives
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Further work -1l

14/ ite-dift.R X of vectorise s do no Check compati
[ T0D0 1 : implement interpolation gth as x? Example
/Dropbox/HSE/La/pnd/pndiR/gradient & : Check the example with neural networks where does n
® 0D0 ] : in this example, the 1:4 vector is not : Hatching in the Hessian is too slow —— de-duplicate firs
[ Tobo fix the next example G: 1x1 Hessians? .
[ Topo describe the default step size T L:g.r.m into 10 vectorised tnput and multi
[ ToDo check method.args as well FEATURE: Repl
[ T0D0 the part where step is compared to step FEATURE:
[ T0D0 for long vectorised argument, vectorise FEATURE:
[ T0D0
[ ToDO

[ Tobo

£ ng val
use this gradient already FEATURE: plug-in s e o estinated
tinisation o algorithm for ai y derivative and
o misation T o E: update the rounding error as the estimated sum
: This is NOT gu eed, hoever, to gue flandle WA in step size selection
heck if FUN(x) was eval K th ze at the beginning
Find where it maps \ nes to g
deduplicate, save
“Currently ignored.

RE: ad B bty ST o o)
the part whe: p p | and precomputed List(stencil, f) to r
compute f0,

if x is

: A o A
te this in C++ to eliminate bott ) . cks: func(x) must be numeric of length
implementing autosteps,

roplsoxMSELa/pndipnd!
® [ o

[ Tobo
[ Tobo
[ Tobo
[ Tobo
[ Tobo
[ Tobo

instead of subtracting one, add one
generalise late;
generalise with (d)
debug this function, test with shrink.fg
any power
: o unit-test coverage >90%

first NA from the output : the conpatibility between the function and its documenta
colour okay slopes differently, warn... b @ Hi el ki

1

1

1

1

1

1

]

]

]

]

1

1

]

] a | o
1: try mixed accurac r : s present in miltint
]

]

+

]

]

]

]

]

]

]

]

1

1

1

1

[ T0DO

But most importantly... please send your failing examples!
Unit tests < user feedback and reproducible errors
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Practical recommendations—|

Do not: Do:

- Believe that computers
cannot be arbitrarily wrong

- Functions are lossy
- Trust the built-in numerical
differences
- Especially the step size

- Fixh = 0.01 because it ‘feels
right’ /you interpreta1-¢
change

- Benchmark evaluation time

- Use optimal-step search or

1/ a+m)
€mach

simply h =

- For higher orders of derivatives

and/or accuracy, increase h to
keep the error low
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Practical recommendations—1I

Do not: Do:
. Use FDwhenevaluatingfis - Startcostly optimisations with
fast a parallel CD2 gradient, restart

from the found optimum (or
near it) with CD4

- Use CD4 to measure || Vf|| for
checking optima

- Request 20 cores for quick
functions

- Use all CPU cores only iff is
slowerthan 0.02s
- On Windows: create the

cluster beforehand and pass it
toGrad () /Jacobian()

48 /48



Thank you for
your attention
and feedback!

g

github.com/Fifis/pnd
andrei.kostyrka@uni.lu


https://github.com/Fifis/pnd

Function and its derivative accuracy comparison

- The vast majority of function evaluations on a computer are lossy
due to finite memory, even linear transformations

. Each operation typically addsa ~ 107 relative error (at least)

- Numerical derivatives are much less accurate than function
values

- ...by afactorof ~100 000 in the best case!

- Many software packages settle fora x10 000 000 accuracy
degradation

- ..which isworse /100 times than it could have been
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Non-existent literature / software

- Most modern articles focus on ultra-high-dimensional numerical
gradients with much fewer evaluations
- Only one (!) paper (Mathur 2012, Ph. D. thesis) with a comprehensive
treatment of the classical case useful for low-dimensional models

- Existing algorithms (Curtis & Reid 1974, Dumontet & Vignes 1977,
Stepleman & Winarsky 1979) lack open-source implementations
- Popular software packages implement very rough rules and do not
refer to any optimality results in the literature
- Most implementations of higher-order and cross-derivatives are
through repeated differencing
- Slower and less accurate than the best solution
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Derivatives in linear models

FUELSALES = ﬁo + 51 Prx + ﬁzpabroad
+ B3COMMUTERS + (3,LOCKDOWN + U

- Exogeneity assumption:
E(U | Pruxs Pabroad; COMMUTERS, LOCKDOWN) = 0

- 52 —E[FUELSALES | Ppux, Pabroad, - - -] = B2 by exogeneity

apabmad
- Causal interpretation: if the foreign fuel price changes by 1€,
fuel sales will change by (3, units ceteris paribus (including U)
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Partial solutions

- RpackagesnumDerivandoptimParallel

- numDeriv: the most full-featured arsenal in terms of accuracy, but
slow; optimParallel: speed gains but no focus on accuracy

- Pythonsnumdifftools
- Discusses Richardson extrapolation; no error analysis
- MATLAB's Optimisation Toolbox

- Focuses on parallel evaluation, not accuracy

- Stata'sderiv
- Implements a step-size search to obtain 8 accurate digits
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Derivatives in non-linear models

Economic vulnerability model for women over 50:

Y* = o + Y3 EducYears + v, NonWhite
+ 3EducYears x NonWhite + X' By + U := X0, + U

y;:{“ ' >0, P(Y =1|X) = Fy(X6,), U~N,A,...

0, Y*<o,
OB(Y=1]X) . ¢, |
 OFducYears fu(X'0o) - (1 + s NonWhite)
OP(Y =11X) . o,
~ ONonWhite fu(X'0o) - (72 + 5 EducYears)

Inference on 73 is not intuitive.
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Inference in non-linear models

Policy-makers are interested in the effects due to changes in
explanatory variables, not parameters.

ax(k SP(Y =1 >~<)
0PV =11 X).

Average partial effect of the k' variable: E-2

Its straightforward estimator |s1 S, X0

Embarrassingly parallel task: a problem that can be splitinto
smaller problems that can be solved in parallel with no
communication between the processes.

- Computing the n-dimensional derivative vector
{BXL},@I@’(Y,» =1 X;)}"_ isembarrassingly parallel

- Inference on 0, based on the Hessian of the log-likelihood is
embarrassingly parallel
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Complications in non-linear models

- Fy is often confined to a specific family (Poisson, exponential,
Gaussian, logistic etc.)
- This parametric assumption could be wrong
- A more flexible approximation of the true distribution of U may not
have a manageable closed-form derivative

- Most data-generating process in economics are highly non-linear
and hard-to-formalise
- Non-linear high-dimensional models tend to have a better
explanatory power and yield more accurate forecasts
- Loss of parameter interpretability
- Numerical derivatives are often the only solution
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Gradient of a function

Gradient: column vector of partial derivatives of a differentiable
scalar function.

Vf(x) =

- Vector input x + scalar output f = vector V

- Atany point x, the gradient—the d-dimensional slope —is the
direction and rate of the steepest growth of f

‘A source of anxiety for non-mathematics students.
J. Nash, ‘Nonlinear Parameter Optimization’ (2014).
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[Visualisation of a gradient]

(3D clip)



Jacobian of a function

Jacobian: Matrix of gradients for a vector-valued function f.
Ifdimx =d, dimf =k,

VTf(1)(X)
Vi) = (200 - ) =

VTf(k)(X)

kxd
- Vector input x + vector output f = matrix V
- In constrained problems, most solvers (e. g. NLopt) for min, f(x)

s.t.g(x) = Orequire an explicit Vg(x)

Including incorrectly computed derivatives (mostly gradients or Ja-
cobian matrices) <...>explains almost all the ‘failures’ of optimisa-
tion codes | see. (Idem.)
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Hessian of a function

Hessian: Square matrix of second-order partial derivatives of a
twice-differentiable scalar function.

_of ... _0f
azf d Ox(M ox(1) Ox(M) Hx(d)
R o S R [
MNox® | . : ' :
OXVOXD ] 1 of .. _0f
Ox(d) ox(M) Ox(d) Hx(d)

The Hessian is the transpose Jacobian of the gradient:
VEf(x) = VI[VF(x)]
- Vector input x + scalar output f = matrix V2

- If Vfis differentiable, sz is symmetric
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Taylor series

o0

k) =33 (- (2

i=0

= f(x) £ D0 DWp2 4 0y 4

The at"-order approximation of f at x is a polynomial of degree a. The

discrepancy between f and its approximation is the remainder. For
somed € [0,1],

a

if(x ) (a+1) X
o) =3 1109y P00 (aif)!‘”“) (dh)e

Forsmallh (h < 1,h — 0), h* 2% 0.
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Example: Taylor series for CRRA utility

Linear approximation of CRRA utility with risk aversion 7:

XN

fx) = o ) =x7" 1) =—mx",

Assume ) = 1.5, approximate f around x, = 2.

f(2+ h)= f(xo) + f'(xo)h = 0.59 + 0.35h = Py(h)
~ Py(h) + 02 — 0.59 4 0.35h — 0.13h* = P,(h)
~ Py(h) + 0ol — 0.59 + 0.35h — 0.2742 + 0.064°
A~ 0.59 + 0.35h — 0.27h* + 0.06h> — 0.02h* ~ ...
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Example: CRRA utility visualisation

1.0

0.5

-0.5
l
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Example: CRRA utility visualisation

1.0

62/48



Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation
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Example: CRRA utility visualisation

- Degree-7 approx. /’___/
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l
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Example: CRRA utility visualisation

2 - Degree-8 approx. //
Ln =

g

e ]

o

LN

3 -
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Reversing the Taylor series

- Taylor theorem: approximate f(x) using f(xo), f'(xo0), f"(Xo)
(‘derivatives = function values’)

- ‘function values = derivatives’ is also possible

- Polynomials are extremely easy to differentiate analytically:

dyn _ ,yn—1
X = hx

- Potentially up to n non-zero derivatives

- Use multiple values f(xo), . . ., f(x,) to construct a degree-n
polynomial approximation and calculate the derivative of the
latter
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Derivatives through Taylor series

f"(x + ah)

flx+h) = f() +FO)h+ ——

W, «€lo,1]

Subtract f(x) and divide by h:

flx+h) —f(x)

F(x + ah)
h T

2

—(x) h=f'(x) + o(h)

Therefore, assuming that f”(x) is uniformly bounded
f'(x) = fip(x, h) + O(h) =~ fip(x, h) + @h (for small h), and
féo(x, h) is first-order-accurate.

This is the naive approximation from Slide 13!

*IM >0 sup|f’(x+ ah)| <M< .

64 /48



Symmetrical differences

To improve the accuracy, consider expansions at x + h:

Flct h) = 100+ FOoh+ Ve EUERR G g e o g
Flc— 1) = 100 — P+ e - E P g oy

2 6
Subtract (2) from (1):

Flx-+ ) = Fx = ) = 2" () 4 LB s

6

Divide by 2h + generalised intermediate value theorem:

f(x+h) —f(x—h)

20 = () + =52, pe[-1,1]
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Equivalence of extrapolation and weighted sums

The following is algebraically identical for higher-order accuracy:

- Extrapolating sequences of central differences at (x + h;),

(x = hy), ...
- Evaluating the function on the grid x + (—hy, —h,, h,, hy) and
combining the values with specific coefficients wy, ..., w,

This opens opportunities for parallel evaluation!

Accuracy: finding w; requires inverting a numerically unstable
Vandermonde matrix = we use (and benchmark!) a reliable
Bjorck—Pereyra (1970) algorithm.
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Second derivatives via central differences

) = < ()

Find such a linear combination of f(x — h), f(x), f(x + h) thatthe
coloured terms should cancel out:

Fx+h) = F(x) + f'(x)h + E8p2 - sy FTCkR) e

Fx— h) = () = £ (x)h + 2kt — Lo 4 Py

6

This weighted sum is the solution:

7 (o h) = f(x —h)— 2);(2x) +f(x+h)
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Accuracy of second derivatives

The error order is the same as with f:

- f////( X)
12

f"(x) — feo(x, h) ~ h* = o(h’)

However, the defaultimplementation in many software products is
repeated differences:

nroy o Fx+h)+f(x—h) _fep(x+h)+ fip(x —h)
fil0 = 2h - 2h

- Approximating f”(x) via a 3-term f(j, is faster:
each f{, takes 2 evaluations

- More accurate with the optimal step size: the h* that is optimal
for f, is too small for f’}, (Slide 84)
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Examples of stencils and weights

' = M =h7'[-1-f(x + 0h) +1-f(x +1h)]
- Stencil: b = (0,1), weights: w = (—1,1)

x+h x—h)
= DOHTOh) — [ 1 (x— ) 4 1f(x + h)]
- Stencil: b = (—1 1)(symmetr1c),weights: w=(-1,7)
n _ fx=h)— zf(x)+f(x+h)

=
. Stencil: b = ( 1,0,1), weights: w = (1,—-2,1)

f _ f(x—2h)—8f (x—h)+8f (x+h)—f(x+2h)
CD4 12h
- Stencil: b = (-2, —1,1,2), weights: w = (—11—2, 52 %)
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Numerical Hessians via central differences

Leth;:=(0...0_h 0...0)andx;_ :=x+h — h;.
~—
ith position

4 evaluations of f are required to approximate ngvia CD:

Vif(x) = [VI(Vf(x))], = Vieof (x) + O(h*) =

CFxes) = Fx—q) = F(x-) +F(x--) 2
= e + O(h?)

- The 4-term sum is as fast as the 4-term V"f(x”’f)z‘hw(x—hj)’
]

but guaranteed to be symmetric: Vi o, = Vi
- Symmetric repeated differences require 8 terms

- Accuracy implications are being investigated
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Floating-point arithmetic

Computers convert inputs into 1's and 0’s for processing.

Real numbers can be written with an integer mantissa (=significant
digits) and an integer exponent (=magnitude):

integer
exponent

1.8125 = 18125 - 10 ~*
—_——

integer base
mantissa

The number18.125 has the same mantissa and a different exponent
(—3). To multiply by 10 (the base), move the decimal point:
1.8125 - 10 = 18.125.

Such numbers are called floating-point numbers.
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Available precision on 64-bit machines

1bit 11 bits 52 bits
sign exponent significant digits

0 100000011011100000011010001100110011001100110011001100110011001

Computing the number from bits:

(—T)Sign . (1,signiﬁcand) . pexponent—2"°+1 _

=1.753198 - 2'9¥77108 — 28724 4

- 64-bit FP numbers represent5 - 1073%* ... 2 .10%8

- Are 64-bit calculations relatively accurate up to 103%?
No,onlyto1/2°> = 2.2 -107'®!

- Precision beyond ~16 decimal significant digits is lost
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Computers have terrible precision

- Machine epsilon (¢n,n): maximum relative step between two
representable numbers, or €ach = 272~ 2.2-1071¢
Cfx = ZiﬂwintegertthernantEsaisSZzeros:OOO“‘OOOnNhenthe
least significant bit is flipped from 0 to 1, the mantissa becomes
000...001,and x — (1 4 €mach )X

Im({formula = mpg ~ disp, data = mtcars)

Coef: Estimate Std. Error t value Pr(>|t])
(Intercept) 29.599855 1.229720 24.070 ok
disp -0.041215 0.004712 -8.747 9.38e-10 ***

- Roundingerrors (e. g. if numbers have different orders of
magnitude), catastrophic cancellation, ill conditioning (high
sensitivity to small input errors)

- Input errors, user mistakes, programmer and hardware bugs —

purgamenta intrant, purgamenta exeunt
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Example: low bit rates in early software

1993, 8-bit audio, 2001, 4-bit audio,
11025 Hz sampling 44100 Hz sampling
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Example: 8-bit audio in the 1990s

MH NW [m l H
“l — ™ l

The vertical position of the wave can take any of the 28 = 256 values;
1 point=1 byte.

11025 Hz =11 kilobytes per second of audio.
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Finite precision in digital data

- The vertical position of the sound wave intensity is digitally
encoded as a number on a fixed grid:
- 4 bits = 2* = 16 positions (very coarse)
. 8 bits = 28 = 256 positions (coarse)
- 16 bits = 2'® = 65536 positions (CD quality)
- 64-bit FP numbers use a similar grid to allow = 2°* =~ 1.8 - 10"
numbers on the entire real line
. The amount of annual Internet trafficis > 10%' bytes—already not
enough even with positive integers
- Oneis limited to 64 bits per number unless they use special libraries

for arbitrary-precision arithmetic at the cost of extra memory and
speed: GMP, MPFR...
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Graphical representation of FP accuracy

- Intervals [1,2],[2, 4], [4, 8], ... are cut into 2°* ~ 4.5 - 10" equal
intervals; all numbers are snapped to the edges
- The gap between two representable numbers is proportional to
the number magnitude
- The rounding error is proportional to the number
- Relative rounding error range: [0 ... 1.1-107¢]
- Caution: round(3.5) = 4,butround(4.5) = 4dueto
rounding towards the nearest even number
- Worst case: the 1992 precision loss in the Patriot missile control
system = 28 soldiers died to a Scud missile
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Insufficient precision example

a = 2752 # 4 503 599 627 370 496, 1/macheps
b=a+0.4

c=b+ 0.3

d=c+ 0.3

d - a # Question: is equal to what?

Answer: zero. (At least in FP64 precision.)

- The next number after 2°% representable by the machine is 2°2 41

- Everything less than 2°% + 0.5 is rounded down to 2°2
- Sort the inputs or use Kahan’s compensated summation to extend

the precision
- But2752+0.340.3+0.3+0.3+0.340.3+... = 2/52!

- Max.rel. error: €., /2, max. abs. error: |y| - €acn/2
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Base-conversion precision loss example

Only finite sums of integer powers of 2 up to 2°% are stored losslessly

in computer memory:
1/2 = 0.5, = 0.1, —fine.
4/5 = 0.8y, = 0.11001100 . . ., = 0.1100, —infinite period.

With 52 bits, one can represent only 0. [1100] 1100 = 0.8 — 2 - 10 '
N——

X12
or

0.[11o00]1101 =0.8 +4-10".

——
X12

If 0.8 is saved as a number, it is read back as a different one:
print (0.8, 20) # 0.80000000000000004441.
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Real case #2: catastrophic cancellation

The causal effect of a 1-euro debt change on the probability of
self-reported good health condition (GH) in the probit model
P(GH =1 Debt, ...) = ®(~,Debt + .. .):

OP(GH; =1) _ ®(9(Debt; +0.001) +...) — ®(yDebt; +...)
ODebt, 0.001

If the argument of ®(+) is too large, probabilities close to 1 are
predicted. If ¥ - Debt; + ... = 8.3, the relative error of 8%%':;0)
be ~ 17%.

can

Consequence: the error of the odds ratio is unbounded.
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IHlustration of catastrophic cancellation

. P(GoodHealthi=0|Debt;)
Evaluated odds ratio P(CoodHealthj=0|Debtj+change)

¢ ] .
T | e True +Infinity
-] o Evaluated )
o |
o v
=
B o -
(%]
© O
©
(@]
& —
~
o
I | | | T |
0.0 0.1 0.2 03 04 05

Change of debt

Probit breaks at X’ 3 = 8.3; logit breaks at X’ 3 = 36.8.
81/48



Total error function properties

On the log-log scale,
- The slope of the left branch is the differentiation order m
(times —1)
- The rounding error of the difference is divided by h™

- The slope of the right branch is the accuracy order a
- The truncation error is approximately f”-- /a! times h”
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General step-size selection

Result: at"-order-accurate m™ numerical derivatives have:

- Optimal step size h, ¢ “R/€mach

. Approximation error o< €™ o¢ h? o €macn/h™ with equal

order of truncation and rounding components

- The total error at the optimal h* is O(elr{azch) for one-sided and
O(fi]/;ch) for central differences

- In 64-bit precision, f{y, is accurate only to ~7-8 decimal digits, and
f¢p to ~10-11 digits at most

A . 1/4
- Second derivatives and Hessians: h¢p oc €
1/5 ..
- 4th-order-accurate CD: hép 4 €n<ach (~12-13 digits)

- Hard limit: impossible to have > 16 accurate decimal places on
64-bit machines without extra effort
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Is repeated differencing dangerous?

Options for f(x): [e=n=2ctTlxth) rf(gD(XJ"h)z_hféD(x_h).

Surprisingly, both have the same maximum attainable accuracy,
o( Lf:ch) (7-8 digits), with hf o e/* . However, using hép o e/

mach* mach
resultsinan O(e nfach) error, i. e. onIy 5-6 accurate digits!

Recall the tip: multiply h¢p bye ~ 20.

mach

Total error of

o f'
10-12 1 ° f"
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Paradigms for step-size search

1. Theoretical (plug-in expressions)

2. Empirical (finding the minimum of the total error)

My package, pnd, provides multiple algorithms (currently under
active feature implementation and testing).

Analogy: Silverman’s rule-of-thumb bandwidth vs. data-driven
cross-validated bandwidth in non-parametric econometrics.

85/48



Naturally noisy functions

Noisy function: many local optima and strong abrupt changes of
curvature.

In optimisation, accurate derivatives of noisy function are useless
(local features obscure global optima).

Although hfy = /1.5|f /f"”|€mach o< 1/f", use larger step sizes to

guess a better trend.

\Sy Sum(|resid|) Sum(|resid|*0.5) Sum(log(lresidl))!
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Relative or absolute step?

- The optimal step size, hip = v/ €mach - 1.5/F(x) /" (x)],
on the value of x only through f(x) /f"'(x)

- However, relative step x - h¢, is often used to eliminate the
problems of units of measurement for large x|

. Ifx =102 and h = 10~*, argument-representation errors appear:
|[X + h]epes — (x + h)| = 2-1075 #£ 0 (Slide 78)

- Ifx=10"%andh =10"* x — h < 0;bad ifdom f = R*™*: log x,
JX... Slide 6)

- The magnitude of x may be informative of the curvature change,

f///( )

- Common practice: choose Xmin = 107%; for [X| < Xmin, use step
size hand for [x| > Xmin, use step size |x|h
- Helps only with large x, not small x such that |f"”’(x)| > 0
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Finite-difference stencils and weighs

Use £dCoef () to obtain the coefficients thatyield an
approximation of the m™ derivative with error O(h*) on the smallest
sufficient stencil.

fdCoef(deriv.order = 2, acc.order = 4)

# $stencil: -2 -1 0] 1 2

# $weights: x-2h x-1h x x+1h x+2h
# -0.08333 1.33333 -2.50000 1.33333 -0.08333

Arbitrary stencils are supported; the resulting coefficients yield the
maximum attainable accuracy:

fdCoef(deriv.order = 1, stencil = c(-1, 0, 4))%weights
# x-1h x x+4h
# -0.80 0.75 0.05 # Second-order accuracy
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Overhead in theory

Using mores cores requires spawning processes and copying memory
pages—there are fixed costs.
= CPU warm-up

Parallel overhead
—— Per-core overhead

i
I

i

I

i

I

i

I

i

!

' —— 1core
E 2 cores
' 4 cores
E —— 8cores
i
|
I
I
I
I
I
|
I
i
I
i

Time spent

Task size

89/48



Overhead in theory

Using mores cores requires spawning processes and copying memory
pages—there are fixed costs.
= CPU warm-up

Parallel overhead
—— Per-core overhead

|
|
|
|
|
|
|
|
|
!
|
1 —— 1core
|
|
|
|
|
|
|
|
|
|
|

€ 1+ —— 2cores

3 4 cores -
(%] ~
) —— 8 cores -

£ -

[=

Task size

89/48



Overhead in theory

Using mores cores requires spawning processes and copying memory
pages—there are fixed costs.
= CPU warm-up

Parallel overhead
—— Per-core overhead

—— 2cores
4 cores

)
I

)

I

'

I

'

I

'

|

I

! —— 1core
I

)

I

i

. —— 8cores
i
'
|

Time spent

Task size

89/48



Overhead in theory

Using mores cores requires spawning processes and copying memory
pages—there are fixed costs.
= CPU warm-up

Parallel overhead
—— Per-core overhead

|
|
|
|
|
|
|
|
|
!
|
1 —— 1core
|
|
|
|
|
|
|
|
|
|
|

€ 1 —— 2cores ~
g 4 cores _—
©n _—

) —— 8 cores -

£ - T
= — —T

Task size

89/48



Overhead magnitude

- Requesting 2 cores for a parallel job: ~0.01s
- 0.3-0.4 s on Windows due to its inability to fork effectively!

- Extra per-core time with pre-scheduling: ~0.005s

- Plus extra time losses for communication between cores

- If one evaluation of f takes <0.01s, compare the gains: reduction
of the number of tasks vs. overhead per core

- If one evaluation of f takes 0.005-0.010 s, compare the gains:
reduction of the number of tasks vs. overhead per core

Timeperf 0.002 0.005 0.01 0.02 0.05 0.1 > 0.2
Use cores 1 23 4 8 12 16 > 24

Long gradients = always parallelise! And always benchmark!
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Overhead of pnd

How faster is calculating (XH')Z# by hand than running dozens

of checks for user inputs?

Each call of Grad () adds 0.5 ms of overhead due to the
infrastructure; it increases with dim x. (To be improved!)

Compare the overhead of computing V¢, fi
f(x) == 9™ X2 4 4sinx + 1.1%in seconds

=1

dim X 1 10 100
Overhead 0.0005-0.0010 0.0008-0.0010 0.0038-0.0041

Is it acceptable in your practical application?
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Finding approximations via interpolation

To calibrate 1, you run thousands of simulations and compute the
goodness of fit f(n). Yougetn = (0.1,0.2,0.4,0.8,0.9),

f(n) = (0.2,0.4,0.5,0.8,0.7), but you want to guess f and f’
aroundn, = 2/3.

fdCoef (0, stencil = (n - n0@))%$weights %*% f
fdCoef (1, stencil = (n - n0B))%weights %x% £

Weights for f: (0.23, —0.56, 0.69, 0.98,
—0.34) = f(2/3) =~ 0.71.

Weights for f": (—1.36,3.51, —5.40, 3.30,
—0.05) = f'(2/3) ~ 1.04. e e N

00 02 04 0.6 08 10

02 04 06 08
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Parallel step-size selection: light functions

If there are no memory-heavy operations (cloning pages, passing
data to child processes), the run time is roughly proportional to the
number of cores.

f(x) <- {Sys.sleep(s); sin(x)}?

Times for the Stepleman—-Winarsky algorithm to terminate in
7 evaluations /3 iterations. Ideally, 3 iterations =3 parallel calls =
thrice the time of one call.

S 0.001 0.01 0.1 1

1core 0.008 0.072 0.702 7.003
2cores 0.038 0.091 0.456 4.061
3cores 0.043 0.092 0.368 3.071
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Parallel step-size selection: heavy functions

Smoothed empirical likelihood with missing
endogenous variables (Cosma, Kostyrka,
Tripathi, 2025). Maximising SEL + computing
VZ-based std. errors via BFGS on 4 cores.

g4 <- function(x) Grad(SEL, x = x,
acc.order = 4, cores = 4)
optim(par = c(1, 1), SEL, gr = g4, method = "BFGS")

Method Ord. Time,s ||VSEL|| Evals Iters

built-in 2 21438 3.6-107* 46 10
pnd 2 13415 21-1077 37 10
pnd 4 16+29 33-10°8 3210
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Available algorithms

i > w N

. Plug-in

Curtis—Reid (1974) and its modification (2025)
Dumontet-Vignes (1977)
Stepleman—Winarsky (1979)

Mathur (2012)
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Improvements for the CR algorithm

1. Estimate the correct truncation error order with 4 parallel
evaluations and use the theoretically correct target ratio

- Instead of ‘truncation error = rounding error’, use the optimal
‘truncation error = rounding error halved’ rule

2. Obtain ¢, , with algorithmically chosen hg;, , times 120
. & 3 times more accurate than theoretical
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Improvements to the AutoDX algorithm

Developed by Ravishankar Mathur (2012, Ph .D. thesis).

- The finite differences may be evaluated on the entire gridon a
multi-core machine

- The user may plot the behaviour of the approximated total error
as an added bonus
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Are data-driven steps good for sin x?

10°0 ® Theor. opt. ® Dumontet-Vignes #® Mathur B’
102 - @ mod. Curtis-Reid(2) ® Stepleman-Winarsky

1004
10°6 |
10°8

10710 —
10812

10014 - e RIRELY Total error
\ | T | | | T | | |
103 10%2 10" 100 10 10~2 103 104 1075 106

- Atdifferent values of x, the rankings of methods change

- For other functions, the rankings are different
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Sensitivity of the error to the step size

Choosing a slightly sub-optimal step size is not as scary. For f = sin,
hép, = +/1.5] tan x|€macn is unbounded —a fixed h can work better.
Safest option: invoke Mathur’s method with a plot.

Example: diagnosing f(x) = expxatx = 1.
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Comparison of median run times

Grid: 9000 exponentially spaced points between 10~2 and 10°
(exception: 3000 pointsin [1072...10"] for exp x).

Unit: millisecond per step size per grid point + derivative estimation.

Func.  hip, |x[\/émach CR CRm2 CRm4 DV SW M
sin x <0.01 <0.01 0.18 016 0.20 0.46 033 170
exp x <0.01 0.02 0.15 0.15 015 0.26 018 172
log x <0.01 0.01 0.5 0m 015 017 0.27 2.09
VX <0.01 <0.01 0.16 0.Mm 015 0.16 014 213
tan~'x <0.01 <0.01 0.14 0.M 017 019 042 1.69
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Comparison of median absolute errors

Error: |f'(x) — f¢p ,| for 9000 exponentially spaced points between
102 and 10° (exception: 3000 points in [T0~2...10'] for exp x).

Short exponential notation: 5.6e-9=5.6 -10~°.

Func.  hi, Xl\/@man ~ CR CRm2 CRm4 DV SW M

sin x 5.7e-11  2.6e-09 1.2e-09 1.2e-10 2.3e-11 1.1e-09 3.0e-11 5.1e-10
exp X 1.5e-11  2.6e-08 2.2e-10 5.7e-11 1.3e-11 3.7e-09 1.4e-11 2.7e-09
log x 1.3e-12 0.0e+00 5.6e-12 1.7e-12 1.6e-13 1.3e-11 5.3e-13 1.0e-10
VX 2.1e-12  2.7e-10 9.3e-12 2.4e-12 2.4e-13 3.7e-11 8.2¢-13 1.5e-10
tan”'x 6.8e-13 5.9e-11 3.5e-13 2.2e-13 2.7e-14 7.8e-13 1.6e-13 9.6e-12
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Logic behind the best methods

- Curtis—Reid (1974) + my modification #2: use 4 available
intermediate points and function values from truncation and
rounding error estimation to obtain a 4™"-order-accurate
estimate (unlike 2)

- Stepleman—Winarsky: the truncation error should be quartered if
the step size is halved = start at a step size larger than the best

guess and halve it until the decrease is substantially different
from 2 due to rounding errors

- ladded a safety step for checking finiteness and extra warnings for
edge cases

- Mathur: SW-like evaluation for many points simultaneously +
diagnostic plots available
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