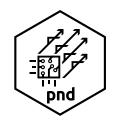
Faites la différence : dérivées **numériques** rapides et précises avec **pnd**



Basé sur le document de travail : Kostyrka, A. V. (2025). What are you doing, step size : A survey of step-size selection methods for numerical derivatives

Andreï V. Kostyrka

UNIVERSITÉ DU LUXEMBOURG
Department of Economics
and Management (DEM)

11^{èmes} Rencontres R Université de Mons 20 mai 2025

Structure de la présentation

1. Motivations et cas d'utilisation

2. Approximations des dérivées analytiques

3. Algorithmes de sélection du pas

4. Mise en avant de pnd

Motivations et cas d'utilisation

Contribution

- 1. J'ai écrit un package R **pnd** pour une **d**ifférenciation **n**umérique **p**arallélisée rapide
 - Premières Jacobiennes, Hessiennes et gradients de haute précision parallèles et open source pour R
 - · J'ai implémenté 6 algorithmes de sélection du pas et évalué leurs performances
 - · Vous verrez ce benchmark
- 2. Je travaille actuellement sur 3 articles sur le sujet : une revue et deux contributions algorithmiques
 - Document de travail: Kostyrka, A. V. Step size selection in numerical differences using a regression kink. Department of Economics and Management discussion paper 2025-09, Université du Luxembourg. https://hdl.handle.net/10993/64958

Motivation

- Les chercheurs s'appuient sur des optimiseurs, des algorithmes, des boîtes noires, etc., et le résultat final dépend de la qualité du solveur
- La plupart des techniques modernes d'optimisation utilisent des gradients numériques pour la minimisation ou la maximisation

Cependant, la plupart des implémentations logicielles produisent des dérivées numériques **imprécises** et **lentes**.

Conséquences: solutions inexactes, variances négatives, inférences statistiques invalides, etc.

Exemple d'application financière

Modèle AR(1)-GARCH(1,1) pour les rendements logarithmiques du NASDAQ, 1990–1994 :

$$\mathbf{r}_t = \mu + \rho \mathbf{r}_{t-1} + \sigma_t \mathbf{U}_t, \quad \sigma_t^2 = \omega + \alpha \mathbf{U}_{t-1}^2 + \beta \sigma_{t-1}^2$$

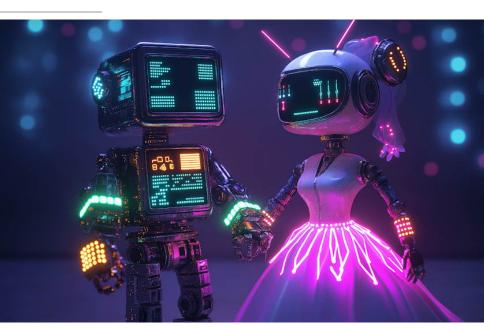
- C CC : .			
Coefficient	Est.	<i>t</i> -stat	<i>t</i> -stat
		rugarch	fGarch
μ	0.0007	2.34	2.31
ho	0.24	7.77	7.73
$\omega imes 10^3$	0.0098	NaN ou 65 défaut secours	3.09
α	0.13	11.1	4.27
β	0.73	39.6	10.9

NaN dû à une variance négative!

Littérature / logiciels existants

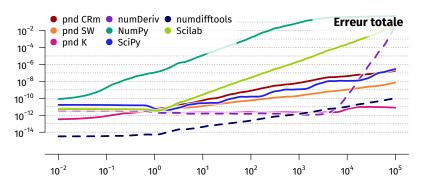
- Gilbert & Varadhan (2019). numDeriv : Accurate Numerical Derivatives.
 - cran.r-project.org/package=numDeriv
 - · Version non parallèle sans vignettes ni démonstrations
- Gerber & Furrer (2019). optimParallel: An R Package Providing a Parallel Version of the L-BFGS-B Optimization Method. The R Journal 11 (1).
 - cran.r-project.org/package=optimParallel
 - Limité à l'appel intégré optim (method = "L-BFGS-B")
- Les algorithmes de dérivées numériques des années 1970 sont restés en sommeil... jusqu'à présent

Marier numDeriv et optimParallel?



Argument de vente de pnd

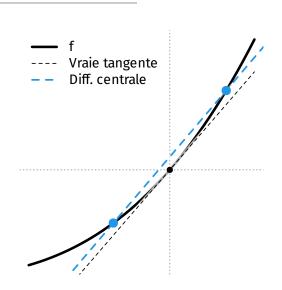
Comparer les logiciels : erreur de la dérivée numérique pour $f(x) = \sin x$ sur une grille à pas exponentiel entre 0,01 et 10 000.



Plein: 2 évaluations, pointillé: >2 évaluations (incomparable).

Approximations des dérivées analytiques

Estimation de la dérivée par différences centrales



$$f(x) = x^3, x_0 = 1$$

$$f'(x_0)=3$$

• Pas
$$h = 0.2$$

$$f'_{CD}(x_0, 0.2) = 3.04$$

Erreur $\approx 1.3\%$

Précision d'ordre supérieur des dérivées premières

Une meilleure précision est atteignable avec davantage d'évaluations de la fonction. Choisissez soigneusement les coefficients pour éliminer les termes indésirables :

$$f' = \underbrace{\frac{-f(x-h) + f(x+h)}{2h}}_{f'_{CD,2}} + O(h^2)$$

$$f' = \underbrace{\frac{f(x-2h) - 8f(x-h) + 8f(x+h) - f(x+2h)}{12h}}_{f'} + O(h^4)$$

- pnd::fdCoef() calcule les stencils et les poids pour des ordres de dérivée et de précision arbitraires
- · Ces 4 évaluations peuvent et doivent être parallélisées

Parallélisation efficace des gradients

Exemple : $\nabla f(x_{3\times 1})$, grille d'évaluation $\{x\pm h, x\pm 2h\}$ pour une précision d'ordre 4. Total : 12 évaluations.

- · Créer une liste de longueur 12 contenant $x + b_i h_i$
- Appliquer f en parallèle aux éléments de la liste, assembler $\left\{ \left\{ f(x+b_jh_i) \right\}_{i=1}^3 \right\}_{i=1}^4$ dans une matrice
- · Calculer les sommes pondérées des lignes

Algorithmes de sélection du pas

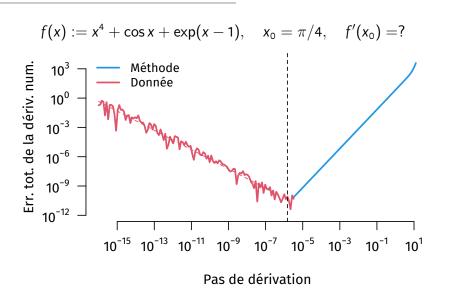
Erreur totale dans les dérivées numériques

La sélection du pas est cruciale pour la précision :

- h trop grand → grande erreur de troncature due au terme de reste de la série de Taylor (mauvaise approximation mathématique)
- h trop petit \rightarrow grande **erreur d'arrondi** (mauvaise approximation **numérique**) : annulation catastrophique, division d'un petit nombre par un petit nombre, précision machine limitée par ϵ_{mach}
- · h quasi optimal \rightarrow les deux erreurs s'équilibrent

Un bon pas unique avec une différence vaut mieux que trois mauvais pas avec raffinements et extrapolations!

Erreur d'approximation à minimiser



Utilisation de l'estimation analytique de l'erreur

Fonction d'erreur totale: borne absolue conservatrice.

$$E(x,h) := \underbrace{\frac{|f'''(x)|}{6}h^2}_{\text{troncature}} + \underbrace{\frac{0.5|f(x)|\epsilon_{\text{mach}}}{h}}_{\text{arrondi}}, \quad h_{\text{opt}} = \sqrt[3]{\frac{1.5|f(x)|}{|f'''(x)|}\epsilon_{\text{mach}}}$$

• Estimer f'''(x) avec un \tilde{h} raisonnable (p. ex. 0,001)

$$Grad(FUN = f, x = x0, h = "plugin")$$

· Dumontet–Vignes (1977) ont proposé un algorithme itératif pour une meilleure estimation de f'''(x)

$$Grad(FUN = f, x = x0, h = "DV")$$

Contrôle du rapport d'erreur

Observation: lorsque l'erreur de troncature et l'erreur d'arrondi sont similaires, l'erreur totale est proche du minimum.

Curtis & Reid (1974) proposent de choisir h tel que

$$\frac{\text{sur-estimation } e_{\text{trunc}}}{e_{\text{round}}} \in [10, 1000] \quad \text{(règle empirique : 100)}$$

 $e_{\rm trunc} \approx$ différences avant moins différences centrales (trop conservateur!), $e_{\rm round} \approx 0.5 |f(x)| \epsilon_{\rm mach}/h$. La règle garantit $e_{\rm trunc} \approx e_{\rm round}$.

· J'ai créé une variante modifiée avec des estimations plus précises

```
Grad(func = f, x = x0, h = "CR")

Grad(func = f, x = x0, h = "CRm")
```

Contrôle de la pente de la branche de troncature

Stepleman & Winarsky (1979) et Mathur (2012) proposent des algorithmes similaires basés sur l'idée de descendre la branche droite de l'erreur estimée :

- · La pente de la branche de droite de l'erreur combinée est a
- · Choisir h_0 suffisamment grand, poser $h_1 = 0.5h_0$, obtenir l'estimation de l'erreur de troncature à partir de $f'_{CD}(x, h_1)$ et $f'_{CD}(x, h_0)$
- · Continuer à réduire tant que la pente reste ≈ 2 ; s'arrêter lorsqu'elle dévie en raison de l'arrondi important

```
Grad(f, x = x0, h = "SW")
Grad(f, x = x0, method = "M")
```

Ajustement de la fonction coche (expérimental!)

L'erreur totale ressemble (en axes logarithmiques) à la lettre « V » :

- · La branche gauche (arrondi) provient de la division par $h^d \Rightarrow$ pente = -d
- · La branche droite (troncature) provient du reste de la série de Taylor, approximativement proportionnel à $h^a \Rightarrow$ pente = a

Ajuster une fonction coche (\checkmark) de pentes connues -d et a et de décalages horizontal et vertical inconnus permet de trouver l'approximation du minimum de l'erreur.

$$Grad(f, x = x0, h = "K")$$
 # « K » pour « kink »

Mise en avant de **pnd**

Compatibilité avec numDeriv

numDeriv reste le package R le plus populaire pour le calcul non parallèle de dérivées précises sans sélection du pas.

Il suffit de remplacer la première lettre minuscule par une majuscule.

pnd	
Grad(f, x)	
<pre>Jacobian(fvector, x)</pre>	
<pre>Hessian(fscalar, x)</pre>	

Facilité d'utilisation et exhaustivité de pnd

pnd

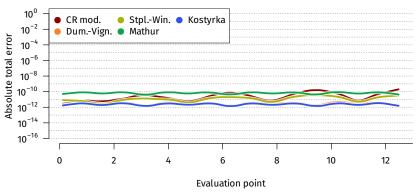
- · Capte 74 erreurs (à ce jour)
- Affiche 44 avertissements prévus (à ce jour)
- Prend en charge
 5 configurations possibles de fonctions et de capacités
 - Vérifications d'entrée multi-étapes avec gestion d'erreur et parallélisation éventuelle
- · Gère des stencils arbitraires

numDeriv

- · 19 erreurs
- Aucun avertissement prévu
- Seulement 3 configurations possibles de fonction
 - Vérification d'entrée en une étape, un seul contrôle d'erreur
- · Impossible d'obtenir certaines Jacobiennes (p. ex. $f(x) := (\sin x, \cos x)'$)
 - · Aucun contrôle utilisateur

Erreur des méthodes de sélection du pas

 $f(x) := \sin x$, grille d'évaluation : $x \in [0.1, 12.5]$, 10 000 points.



La courbe orange est masquée par la bleue.

Travaux futurs

- · Tester les améliorations des algorithmes de sélection du pas
- Ajouter une mémoïsation pour réutiliser les valeurs de fonction afin d'obtenir des dérivées plus précises
- Répondre aux exemples qui échouent chez les utilisateurs et corriger les bogues
 - Les tests unitaires < les retours et erreurs reproductibles des utilisateurs

Recommandations pratiques

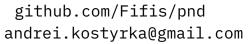
À ne pas faire :

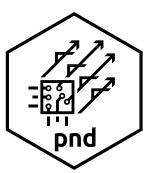
- Fixer h = 0.01 parce que «ça semble correct» ou parce que vous interprétez un changement de 1 ¢
- Différences avant lorsque l'évaluation de f est rapide
- Demander 24 cœurs pour des fonctions rapides (surcharge!)
- Sauter la recherche du pas optimal lorsque les gradients sont l'objet d'intérêt

À faire :

- Fournir des informations sur f
 pour éviter les vérifications
 GenD(...,
 elementwise = ...,
 vectorised = ...,
 multivalued = ...)
- · Chercher le pas optimal
- Utiliser tous les cœurs CPU uniquement si f prend > 0,02 s
 - Sous Windows: créer un cluster et le passer à Grad () / Jacobian ()

Merci pour votre attention et vos commentaires!





Function and its derivative accuracy comparison

- The vast majority of function evaluations on a computer are lossy due to finite memory, even linear transformations
 - · Each operation typically adds a $\approx 10^{-16}$ relative error (at least)
- Numerical derivatives are much less accurate than function values
 - · ...by a factor of \approx 100 000 in the best case!
 - Many software packages settle for a \times 10 000 000 accuracy degradation
 - · ...which is worse \approx 100 times than it could have been

Non-existent literature / software

- Most modern articles focus on ultra-high-dimensional numerical gradients with much fewer evaluations
 - Only one (!) paper (Mathur 2012, Ph. D. thesis) with a comprehensive treatment of the classical case useful for low-dimensional models
- Existing algorithms (Curtis & Reid 1974, Dumontet & Vignes 1977, Stepleman & Winarsky 1979) lack open-source implementations
 - Popular software packages implement very rough rules and do not refer to any optimality results in the literature
- Most implementations of higher-order and cross-derivatives are through repeated differencing
 - · Slower and less accurate than a one-time weighted sum

Partial solutions

- · R packages numDeriv and optimParallel
 - numDeriv: the most full-featured arsenal in terms of accuracy,
 but slow; optimParallel: speed gains but no focus on accuracy
- · Python's numdifftools
 - · Discusses Richardson extrapolation; no error analysis
- · MATLAB's Optimisation Toolboxxt
 - · Focuses on parallel evaluation, not accuracy
- · Stata's deriv
 - · Implements a step-size search to obtain 8 accurate digits

Higher-order accuracy of m^{th} -order derivatives

Stencil: strictly increasing sequence of real numbers: $b_1 < ... < b_n$. (Preferably symmetric around 0 for the best accuracy.) Example: b = (-2, -1, 1, 2).

Derivatives of any order m with error $O(h^a)$ may be approximated as weighted sums of f evaluated on the **evaluation grid** for that stencil: $x + b_1 h, \ldots, x + b_n h$.

With enough points (n > m), one can find such weights $\{w_i\}_{i=1}^n$ that yield the a^{th} -order-accurate approximation of $f^{(m)}$, where $a \le n - m$:

$$\frac{\mathrm{d}^m f}{\mathrm{d} x^m}(x) = h^{-m} \sum_{i=1}^n w_i f(x+b_i h) + O(h^a)$$

Gradient of a function

Gradient: column vector of partial derivatives of a differentiable scalar function.

$$\nabla f(x) := \begin{pmatrix} \frac{\partial f}{\partial x^{(1)}}(x) \\ \vdots \\ \frac{\partial f}{\partial x^{(d)}}(x) \end{pmatrix}$$

- · Vector input x + scalar output f = vector ∇
- At any point x, the gradient the d-dimensional slope is the direction and rate of the steepest growth of f

'A source of anxiety for non-mathematics students.'

J. Nash, 'Nonlinear Parameter Optimization' (2014).

Jacobian of a function

Jacobian: Matrix of gradients for a vector-valued function f.

If
$$\dim x = d$$
, $\dim f = k$,

$$\nabla f(x) := \left(\frac{\partial f}{\partial x^{(1)}}(x) \cdots \frac{\partial f}{\partial x^{(d)}}(x)\right)_{k \times d} = \begin{pmatrix} \nabla^{1} f^{(1)}(x) \\ \vdots \\ \nabla^{T} f^{(k)}(x) \end{pmatrix}_{k \times d}$$

- · Vector input x + vector output f = matrix ∇
- · In constrained problems, most solvers (e. g. NLopt) for min_x f(x)s. t. g(x) = 0 require an explicit $\nabla g(x)$

Including incorrectly computed derivatives (mostly gradients or Jacobian matrices) <...> explains almost all the 'failures' of optimisation codes I see. (Idem.)

Hessian of a function

Hessian: Square matrix of second-order partial derivatives of a twice-differentiable scalar function.

$$\nabla^2 f(\mathbf{x}) := \left\{ \frac{\partial^2 f}{\partial \mathbf{x}^{(i)} \partial \mathbf{x}^{(j)}} \right\}_{i,j=1}^d = \begin{pmatrix} \frac{\partial^2 f}{\partial \mathbf{x}^{(1)} \partial \mathbf{x}^{(1)}} & \cdots & \frac{\partial^2 f}{\partial \mathbf{x}^{(1)} \partial \mathbf{x}^{(d)}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial \mathbf{x}^{(d)} \partial \mathbf{x}^{(1)}} & \cdots & \frac{\partial^2 f}{\partial \mathbf{x}^{(d)} \partial \mathbf{x}^{(d)}} \end{pmatrix} (\mathbf{x})$$

The Hessian is the transpose Jacobian of the gradient:

$$\nabla^2 f(x) = \nabla^{\mathsf{T}} [\nabla f(x)]$$

- · Vector input x + scalar output f = matrix ∇^2
- · If ∇f is differentiable, ∇_f^2 is symmetric

Numerical Hessians via central differences

Let
$$h_i := (0 \dots 0 \underbrace{h}_{i^{\text{th}} \text{ position}} 0 \dots 0)'$$
 and $x_{+-} := x + h_i - h_j$.

4 evaluations of f are required to approximate $\nabla_{ij}^2 f$ via CD :

$$\nabla_{ij}^{2} f(x) := \left[\nabla^{T} (\nabla f(x)) \right]_{ij} := \nabla_{ij,CD}^{2} f(x) + O(h^{2}) =$$

$$= \frac{f(x_{++}) - f(x_{-+}) - f(x_{+-}) + f(x_{--})}{4h^{2}} + O(h^{2})$$

- · The 4-term sum is as **fast** as the 4-term $\frac{\nabla_i f(x+h_j) \nabla_i f(x-h_j)}{2h_j}$, but guaranteed to be **symmetric**: $\hat{\nabla}_{ij,CD}^2 = \hat{\nabla}_{ji,CD}^2$
 - · Symmetric repeated differences require 8 terms
- Accuracy implications are being investigated

Total error function properties

On the log-log scale,

- The slope of the left branch is the differentiation order m (times -1)
 - · The rounding error of the difference is divided by h^m
- · The slope of the right branch is the accuracy order a
 - · The truncation error is approximately $f'' \cdot \cdot \cdot / a!$ times h^a

Optimal step tips and tricks

Rules of thumb to help one save time and obtain more useful quantities once they have determined $h_{\text{CD},2}^*$ "

- Since $h_{\text{CD},2}^{**} \propto \epsilon_{\text{mach}}^{1/4}$, $h_{\text{CD},2}^{*}/h_{\text{CD},4}^{**} \propto \epsilon_{\text{mach}}^{1/12}$. • Multiply $h_{\text{CD},2}^{*}$ by \approx 20 for a reasonable step size for second derivatives (f'')
 - · Logic: higher derivation order \Rightarrow division by h^2 instead of $h \Rightarrow$ higher rounding error \Rightarrow increasing h^* to reduce it
- Similarly, $h_{\text{CD},4}^* = \propto \epsilon_{\text{mach}}^{1/5}$, $h_{\text{CD},2}^*/h_{\text{CD},4}^* \propto \epsilon_{\text{mach}}^{2/15}$. • Multiply $h_{\text{CD},2}^*$ by \approx 100 for a reasonable step size for 4th-order-accurate first derivatives (f' but better)
 - Logic: higher approximation order \Rightarrow more points \Rightarrow smaller truncation error at $h^*_{CD,2} \Rightarrow$ increasing h^* to reduce the rounding error

Optimal step troubleshooting

- If the function is quasi-quadratic, $f''' \approx 0$, $f'''' \approx 0$, ..., then, the step-size search might be unreliable
 - · Happens at the optima of likelihood functions in large samples
 - · Solution : use the fixed step $\sqrt[3]{\epsilon_{\rm mach}} \max\{|x|,1\}$ after checking diagnostic messages
 - Typical error: step size too large after dividing by f''', solution at the search range boundary, or solution greater than |x|...
- If the function is noisy / approximate, multiply $h_{\rm CD,2}^*$ by 10 per 3 wrong digits of f
 - · If f(x) has numerical root search, optimisation, integration, differentiation, etc., $|f(x) \hat{f}(x)|/|f(x)| \ge 0$ by more than ϵ_{mach}
 - In general, replace $\epsilon_{\rm mach}$ in the total-error formula with the maximum expected relative error \Rightarrow h becomes larger with more wrong decimal digits

Paradigms for step-size search

- 1. Theoretical (plug-in expressions)
- 2. Empirical (finding the minimum of the total error)

pnd, provides multiple algorithms (currently under active feature implementation and testing).

Analogy: Silverman's rule-of-thumb bandwidth vs. data-driven cross-validated bandwidth in non-parametric econometrics.

Overhead magnitude

- · Requesting 2 cores for a parallel job : \approx 0.01 s
 - · 0.3–0.4 s on Windows due to its inability to fork effectively!
- · Extra per-core time with pre-scheduling : \approx 0.005 s
 - · Plus extra time losses for communication between cores
- If one evaluation of f takes < 0.01 s, compare the gains : reduction of the number of tasks vs. overhead per core
- If one evaluation of f takes 0.005–0.010 s, compare the gains : reduction of the number of tasks vs. overhead per core

```
Time per f 0.002 0.005 0.01 0.02 0.05 0.1 > 0.2 Use cores 1 2–3 4 8 12 16 \geq 24
```

Long gradients \Rightarrow always parallelise! And always benchmark!

Overhead of pnd

How faster is calculating $\frac{f(x+h)-f(x-h)}{2h}$ by hand than running dozens of checks for user inputs?

Each call of Grad() adds 0.5 ms of overhead due to the infrastructure; it increases with dim x. (To be improved!)

Compare the overhead of computing $\nabla f'_{CD,2}$ for $f(x) := \sum_{i=1}^{\dim x} x^2 + 4 \sin x + 1.1^x$ in seconds :

Is it acceptable in your practical application?

Example: overhead in light functions

If there are no memory-heavy operations (cloning pages, passing data to child processes), the run time is roughly proportional to the number of cores.

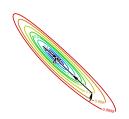
$$f(x) \leftarrow \{Sys.sleep(s); sin(x)\}$$

Times for the Stepleman–Winarsky algorithm to terminate in 7 evaluations / 3 iterations. Ideally, 3 iterations = 3 parallel calls = thrice the time of one call.

S	0.001	0.01	0.1	1
1 core	0.008	0.072	0.702	7.003
2 cores	0.038	0.091	0.456	4.061
3 cores	0.043	0.092	0.368	3.071

Example: slow functions

Smoothed empirical likelihood with missing endogenous variables (Cosma, Kostyrka, Tripathi, 2025). Maximising SEL + computing ∇^2 -based std. errors via BFGS on 4 cores.



Method	Ord.	Time, s	$\ \nabla SEL \ $	Evals	Iters
built-in	2	21+3.8	$3.6 \cdot 10^{-4}$	46	10
pnd	2	13+1.5	$2.1 \cdot 10^{-7}$	37	10
pnd	4	16+2.9	$3.3 \cdot 10^{-8}$	32	10

Available algorithms

- 1. Plug-in
- 2. Curtis-Reid (1974) and its modification (2025)
- 3. Dumontet-Vignes (1977)
- 4. Stepleman-Winarsky (1979)
- 5. Mathur (2012)
- 6. Kostyrka (2025)

Improvements for the CR algorithm

- 1. Estimate the correct truncation error order with 4 parallel evaluations and use the theoretically correct target ratio
 - Instead of 'truncation error = rounding error', use the optimal 'truncation error = rounding error halved' rule
- 2. Obtain $f'_{CD,4}$ with algorithmically chosen $h^*_{CD,2}$ times 120
 - $\cdot \approx$ 3 times more accurate than theoretical

Improvements to the AutoDX algorithm

Developed by Ravishankar Mathur (2012, Ph.D. thesis).

- The finite differences may be evaluated on the entire grid on a multi-core machine
- The user may plot the behaviour of the approximated total error as an added bonus

Comparison of median run times

Grid: 9000 exponentially spaced points between 10^{-3} and 10^{6} (exception: 3000 points in $[10^{-2} \dots 10^{1}]$ for exp x).

Unit: millisecond per step size per grid point + derivative estimation.

Func.	h* _{CD,2}	$ x \sqrt{\epsilon_{mach}}$	CR	CRm2	CRm4	DV	SW	М
sin x	<0.01	<0.01	0.18	0.16	0.20	0.46	0.33	1.70
exp x	<0.01	0.02	0.15	0.15	0.15	0.26	0.18	1.72
$\log x$	<0.01	0.01	0.15	0.11	0.15	0.17	0.27	2.09
\sqrt{x}	<0.01	< 0.01	0.16	0.11	0.15	0.16	0.14	2.13
tan ⁻¹ x	<0.01	<0.01	0.14	0.11	0.17	0.19	0.42	1.69

Comparison of median absolute errors

Error: $|f'(x) - f'_{CD,2}|$ for 9000 exponentially spaced points between 10^{-3} and 10^{6} (exception: 3000 points in $[10^{-2}...10^{1}]$ for exp x).

Short exponential notation: $5.6e - 9 = 5.6 \cdot 10^{-9}$.

Func.	h*	$ x \sqrt{\epsilon_{\mathrm{mach}}}$	CR	CRm2	CRm4	DV	SW	М
sin x	5.7e-11	2.6e-09	1.2e-09	1.2e-10	2.3e-11	1.1e-09	3.0e-11	5.1e-10
exp x	1.5e-11	2.6e-08	2.2e-10	5.7e-11	1.3e-11	3.7e-09	1.4e-11	2.7e-09
$\log x$	1.3e-12	0.0e+00	5.6e-12	1.7e-12	1.6e-13	1.3e-11	5.3e-13	1.0e-10
\sqrt{x}	2.1e-12	2.7e-10	9.3e-12	2.4e-12	2.4e-13	3.7e-11	8.2e-13	1.5e-10
tan ⁻¹ x	6.8e-13	5.9e-11	3.5e-13	2.2e-13	2.7e-14	7.8e-13	1.6e-13	9.6e-12

Logic behind the best methods

- Curtis–Reid (1974) + my modification #2: use 4 available intermediate points and function values from truncation and rounding error estimation to obtain a 4th-order-accurate estimate (unlike 2)
- Stepleman—Winarsky: the truncation error should be quartered if the step size is halved ⇒ start at a step size larger than the best guess and halve it until the decrease is substantially different from 2 due to rounding errors
 - I added a safety step for checking finiteness and extra warnings for edge cases
- Mathur: SW-like evaluation for many points simultaneously + diagnostic plots available