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Motivation and use cases



Contribution

1. I wrote an R package – pnd – for fast, parallelised numerical
differentiation

• First open-source parallel Jacobians, Hessians and
higher-order-accurate gradients in R

• I implemented 6 algorithms for step-size selection and
benchmarked their performance

• You will see this benchmark

2. I am currently working on 3 papers on the topic: a survey and two
algorithmic ones

• Working paper: Kostyrka, A. V. Step size selection in numerical
differences using a regression kink. Department of Economics and
Management discussion paper 2025-09, University of Luxembourg.
https://hdl.handle.net/10993/64958
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Motivation

• Researchers rely on optimisers, algorithms, black boxes etc., and
the end result depends on the solver quality

• Most popular modern optimisation techniques use numerical
gradients for minimisation or maximisation

However, most software implementations yield inaccurate and slow
numerical derivatives.

Consequences: inexact solutions, negative variances, invalid
statistical inference etc.
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Example from a financial application

AR(1)-GARCH(1, 1) model for NASDAQ log-returns, 1990–1994:

rt = µ+ ρrt−1 + σtUt, σ2
t = ω + αU2

t−1 + βσ2
t−1

Coefficient Est. t-stat t-stat
rugarch fGarch

µ 0.0007 2.34 2.31
ρ 0.24 7.77 7.73
ω × 103 0.0098 NaN

default
or 65

fallback
3.09

α 0.13 11.1 4.27
β 0.73 39.6 10.9

NaN due to negative variance!
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Existing literature / software

• Gilbert & Varadhan (2019). numDeriv: Accurate Numerical
Derivatives.
cran.r-project.org/package=numDeriv

• Non-parallel version without vignettes or derivations

• Gerber & Furrer (2019). optimParallel: An R Package Providing a
Parallel Version of the L-BFGS-B Optimization Method. The R
Journal 11 (1).
cran.r-project.org/package=optimParallel

• Limited to the built-inoptim(method = "L-BFGS-B")
• Algorithms for numerical derivatives from the 1970s have

remained dormant.. . until now
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Marrying numDeriv + optimParallel functionality

.



Selling point of pnd

Compare the software: numerical derivative error for f (x) = sin x on
an exponentially spaced grid between 0.01 and 10 000.

Erreur totalepnd CRm
pnd SW
pnd K

numDeriv
NumPy
SciPy

numdifftools
Scilab

10−14
10−12
10−10
10−8
10−6
10−4
10−2

10−2 10−1 100 101 102 103 104 105

Solid: 2 evaluations, dashed: >2 evaluations (incomparable).
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Approximations of analytical derivatives



Derivative estimation via central differences

f
Vraie tangente
Diff. centrale

• f (x) = x3, x0 = 1

• f ′(x0) = 3

• Step size h = 0.2

• f ′CD(x0, 0.2) = 3.04
Error≈ 1.3%
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Higher-order accuracy of first derivatives

Better accuracy is achievable with more function evaluations.
Carefully choose the coefficients to eliminate the undesirable terms:

f ′ =
−f (x − h) + f (x + h)

2h︸ ︷︷ ︸
f ′CD,2

+O(h2)

f ′ =
f (x − 2h)− 8f (x − h) + 8f (x + h)− f (x + 2h)

12h︸ ︷︷ ︸
f ′CD,4

+O(h4)

• pnd::fdCoef() computes stencils and weights for arbitrary
derivative orders and accuracy orders

• These 4 evaluations can and should be parallelised
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Efficient parallelisation of gradients

Example: ∇f (x3×1), evaluation grid {x ± h, x ± 2h} for 4th-order
accuracy. Total: 12 evaluations.

w1 =
1

12 w2 = − 8
12 w3 =

8
12 w4 = − 1

12

x(1) f (x − 2h1) f (x − h1) f (x + h1) f (x + 2h1)

x(2) f (x − 2h2) f (x − h2) f (x + h2) f (x + 2h2)

x(3) f (x − 2h3) f (x − h3) f (x + h3) f (x + 2h3)

• Create a list of length 12 containing x + bjhi

• Apply f in parallel to the list items, assemble{
{f (x + bjhi)}3

i=1
}4

j=1 in a matrix

• Compute weighted row sums
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Step-size selection algorithms



Total error in numerical derivatives

Step size selection is critical for accuracy:

• h too large→ large truncation error from the remainder
Taylor-series term (poor mathematical approximation)

• h too small→ large rounding error (poor numerical
approximation): catastrophic cancellation, division of something
small by something small, machine accuracy limited by ϵmach

• h near-optimal→ the two errors are balanced

One good step size with one difference is better than 3 bad step sizes
with refinements and extrapolations!
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Approximation error to minimise

f (x) := x4 + cos x + exp(x − 1), x0 = π/4, f ′(x0) =?

Pas de dérivation

Er
r. 

to
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iv
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.
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10−3

100

103

10−15 10−13 10−11 10−9 10−7 10−5 10−3 10−1 101

Méthode
Donnée
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Using the analytical error estimate

Total-error function: conservative absolute-error bound.

E(x, h) :=
|f ′′′(x)|

6
h2︸ ︷︷ ︸

truncation

+
0.5|f (x)|ϵmach

h︸ ︷︷ ︸
rounding

, hopt =
3

√
1.5|f (x)|
|f ′′′(x)|

ϵmach

• Estimate f ′′′(x) using any reasonable h̃ (e. g. 0.001)

Grad(FUN = f, x = x0, h = "plugin")

• Dumontet–Vignes (1977) proposed an iterative search algorithm
for a better estimate of f ′′′(x)

Grad(FUN = f, x = x0, h = "DV")
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Controlling the error ratio

Observation: when the truncation error and the rounding error are
similar, the total error is close to minimal.

Curtis & Reid (1974) proposed choosing h such that
over-estimated etrunc

eround
∈ [10, 1000] (rule of thumb: 100)

etrunc ≈ forward minus central differences (too conservative!),
eround ≈ 0.5|f (x)|ϵmach/h. The RoT ensures that etrunc ≈ eround.

• I created a modified variant with more accurate estimates

Grad(func = f, x = x0, h = "CR")
Grad(func = f, x = x0, h = "CRm")
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Controlling the truncation-branch slope

Stepleman & Winarsky (1979) and Mathur (2012) propose similar
algorithms based on the idea of descending down the right branch of
the estimated combined error:

• The slope of the right branch of the combined error is a

• Choose h0 large enough, set h1 = 0.5h0, get the truncation error
estimate from f ′CD(x, h1) and f ′CD(x, h0)

• Continue shrinking while the slope of the truncation branch is
≈ 2; stop when it deviates due to the substantial round-off error

Grad(f, x = x0, h = "SW")
Grad(f, x = x0, method = "M")
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Fitting the check function (new & experimental!)

The total error looks (in logarithmic axes) like the letter ‘V’:

• The left, rounding branch is due to division by hd ⇒ slope =−d

• The right, truncation branch is due to the remainder in the Taylor
series that is approximately a multiple of ha ⇒ slope = a

Fit a check function (✓) with known slopes−d and a and unknown
horizontal and vertical shifts to find the approximate minimum of
the error.

Grad(f, x = x0, h = "K") # For "kink"
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Showcasingpnd



Compatibility withnumDeriv

numDeriv remains the most popular R package for non-parallel
computation of accurate derivatives without step-size selection.

Simply replace the first lowercase letter with an uppercase one.

numDeriv
grad(f, x)
jacobian(fvector, x)
hessian(fscalar, x)

pnd
Grad(f, x)
Jacobian(fvector, x)
Hessian(fscalar, x)
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User-friendliness and thoroughness of pnd

pnd
• Catches 74 errors (so far)

• Prints 44 foreseen warnings
(so far)

• Supports 5 possible
configurations of function
properties and capabilities

• Multi-stage input checks
with error handling and
possible parallelisation

• Handles arbitrary stencils

numDeriv
• 19 errors

• Zero foreseen warnings
• Only 3 possible function

configurations
• One-stage input check, only

one error check

• Impossible to obtain
Jacobians for certain
functions (e. g.
f (x) := (sin x, cos x)′)

• No user controls
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Error of step-selection methods for f (x) := sin x

Evaluation grid: x ∈ [0.1, 12.5], 10 000 points.

Evaluation point
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Mathur

Kostyrka
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10−10
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10−6
10−4
10−2
100

0 2 4 6 8 10 12

The orange line is obstructed by the blue one.
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Further work

• Test improvements for the step-size selection algorithms

• Add memoisation to reuse function values for more accurate
derivative estimates

• Respond to users’ failing examples and fix bugs
• Unit tests< user feedback and reproducible errors
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Practical recommendations

Do not:
• Set step size h = 0.01

because it ‘feels right’ or
you interpret a 1-¢ change

• Use forward differences
when evaluating f is fast

• Request 24 cores for quick
functions (overhead!)

• Skip step-size search when
gradients are the object of
interest

Do:
• Supply function information to

skip checks
GenD(...,
elementwise = ...,
vectorised = ...,
multivalued = ...)

• Use optimal-step search
• Use all CPU cores only if f takes

longer than 0.02 s
• On Windows: create a cluster and

pass it toGrad() /
Jacobian()
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Thank you for
your attention
and feedback!

github.com/Fifis/pnd
andrei.kostyrka@gmail.com

pnd

https://github.com/Fifis/pnd


Function and its derivative accuracy comparison

• The vast majority of function evaluations on a computer are lossy
due to finite memory, even linear transformations

• Each operation typically adds a ≈ 10−16 relative error (at least)

• Numerical derivatives are much less accurate than function
values

• ...by a factor of ≈100 000 in the best case!
• Many software packages settle for a×10 000 000 accuracy

degradation
• ...which is worse ≈100 times than it could have been
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Non-existent literature / software

• Most modern articles focus on ultra-high-dimensional numerical
gradients with much fewer evaluations

• Only one (!) paper (Mathur 2012, Ph. D. thesis) with a comprehensive
treatment of the classical case useful for low-dimensional models

• Existing algorithms (Curtis & Reid 1974, Dumontet & Vignes 1977,
Stepleman & Winarsky 1979) lack open-source implementations

• Popular software packages implement very rough rules and do not
refer to any optimality results in the literature

• Most implementations of higher-order and cross-derivatives are
through repeated differencing

• Slower and less accurate than a one-time weighted sum
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Partial solutions

• R packagesnumDeriv andoptimParallel
• numDeriv: the most full-featured arsenal in terms of accuracy, but

slow;optimParallel: speed gains but no focus on accuracy

• Python’snumdifftools
• Discusses Richardson extrapolation; no error analysis

• MATLAB’sOptimisation Toolboxxt
• Focuses on parallel evaluation, not accuracy

• Stata’sderiv
• Implements a step-size search to obtain 8 accurate digits
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Higher-order accuracy of mth-order derivatives

Stencil: strictly increasing sequence of real numbers: b1 < . . . < bn.
(Preferably symmetric around 0 for the best accuracy.) Example:
b = (−2,−1, 1, 2).

Derivatives of any order m with error O(ha)may be approximated as
weighted sums of f evaluated on the evaluation grid for that stencil:
x + b1h, . . . , x + bnh.

With enough points (n > m), one can find such weights {wi}n
i=1 that

yield the ath-order-accurate approximation of f (m), where a ≤ n − m:

dmf
dxm (x) = h−m

n∑
i=1

wif (x + bih) + O(ha)
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Gradient of a function

Gradient: column vector of partial derivatives of a differentiable
scalar function.

∇f (x) :=


∂f
∂x(1) (x)

...
∂f

∂x(d) (x)


• Vector input x + scalar output f = vector∇
• At any point x, the gradient – the d-dimensional slope – is the

direction and rate of the steepest growth of f

‘A source of anxiety for non-mathematics students.’
J. Nash, ‘Nonlinear Parameter Optimization’ (2014).
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Jacobian of a function

Jacobian: Matrix of gradients for a vector-valued function f .
If dim x = d, dim f = k,

∇f (x) :=
(

∂f
∂x(1) (x) · · · ∂f

∂x(d) (x)
)

k×d
=

∇Tf (1)(x)
...

∇Tf (k)(x)


k×d

• Vector input x + vector output f = matrix∇
• In constrained problems, most solvers (e. g. NLopt) forminx f (x)

s. t. g(x) = 0 require an explicit∇g(x)

Including incorrectly computed derivatives (mostly gradients or Ja-
cobian matrices) <...> explains almost all the ‘failures’ of optimisa-
tion codes I see. (Idem.)
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Hessian of a function

Hessian: Square matrix of second-order partial derivatives of a
twice-differentiable scalar function.

∇2f (x) :=
{

∂2f
∂x(i)∂x(j)

}d

i,j=1
=


∂2f

∂x(1)∂x(1) · · · ∂2f
∂x(1)∂x(d)

... . . . ...
∂2f

∂x(d)∂x(1) · · · ∂2f
∂x(d)∂x(d)

 (x)

The Hessian is the transpose Jacobian of the gradient:

∇2f (x) = ∇T[∇f (x)]

• Vector input x + scalar output f = matrix∇2

• If∇f is differentiable,∇2
f is symmetric
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Numerical Hessians via central differences

Let hi := (0 . . . 0 h︸︷︷︸
ith position

0 . . . 0)′ and x+− := x + hi − hj.

4 evaluations of f are required to approximate∇2
ijf via CD:

∇2
ijf (x) :=

[
∇T(∇f (x)

)]
ij := ∇2

ij,CDf (x) + O(h2) =

=
f (x++)− f (x−+)− f (x+−) + f (x−−)

4h2 + O(h2)

• The 4-term sum is as fast as the 4-term ∇if (x+hj)−∇if (x−hj)

2hj
,

but guaranteed to be symmetric: ∇̂2
ij,CD = ∇̂2

ji,CD
• Symmetric repeated differences require 8 terms

• Accuracy implications are being investigated
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Total error function properties

On the log-log scale,

• The slope of the left branch is the differentiation order m
(times−1)

• The rounding error of the difference is divided by hm

• The slope of the right branch is the accuracy order a
• The truncation error is approximately f ′′.../a! times ha
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Optimal step tips and tricks

Rules of thumb to help one save time and obtain more useful
quantities once they have determined h∗

CD,2"

• Since h∗∗
CD,2 ∝ ϵ

1/4
mach, h∗

CD,2/h∗∗
CD,4 ∝ ϵ

1/12
mach.

Multiply h∗
CD,2 by≈20 for a reasonable step size for second

derivatives (f ′′)
• Logic: higher derivation order⇒ division by h2 instead of h⇒

higher rounding error⇒ increasing h∗ to reduce it

• Similarly, h∗
CD,4 =∝ ϵ

1/5
mach, h∗

CD,2/h∗
CD,4 ∝ ϵ

2/15
mach.

Multiply h∗
CD,2 by≈100 for a reasonable step size for

4th-order-accurate first derivatives (f ′ but better)
• Logic: higher approximation order⇒more points⇒ smaller

truncation error at h∗CD,2 ⇒ increasing h∗ to reduce the rounding
error
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Optimal step troubleshooting

• If the function is quasi-quadratic, f ′′′ ≈ 0, f ′′′′ ≈ 0, . . . , then, the
step-size search might be unreliable

• Happens at the optima of likelihood functions in large samples
• Solution: use the fixed step 3

√
ϵmach max{|x|, 1} after checking

diagnostic messages
• Typical error: step size too large after dividing by f ′′′, solution at the

search range boundary, or solution greater than |x|. . .

• If the function is noisy / approximate, multiply h∗
CD,2 by 10 per

3 wrong digits of f
• If f (x) has numerical root search, optimisation, integration,

differentiation, etc., |f (x)− f̂ (x)|/|f (x)| ≥ 0 by more than ϵmach

• In general, replace ϵmach in the total-error formula with the
maximum expected relative error⇒ h becomes larger with more
wrong decimal digits
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Paradigms for step-size search

1. Theoretical (plug-in expressions)

2. Empirical (finding the minimum of the total error)

pnd, provides multiple algorithms (currently under active feature
implementation and testing).

Analogy: Silverman’s rule-of-thumb bandwidth vs. data-driven
cross-validated bandwidth in non-parametric econometrics.
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Overhead magnitude

• Requesting 2 cores for a parallel job: ≈0.01 s
• 0.3–0.4 s on Windows due to its inability to fork effectively!

• Extra per-core time with pre-scheduling: ≈0.005 s
• Plus extra time losses for communication between cores

• If one evaluation of f takes <0.01 s, compare the gains: reduction
of the number of tasks vs. overhead per core

• If one evaluation of f takes 0.005–0.010 s, compare the gains:
reduction of the number of tasks vs. overhead per core

Time per f 0.002 0.005 0.01 0.02 0.05 0.1 > 0.2
Use cores 1 2–3 4 8 12 16 ≥ 24

Long gradients⇒ always parallelise! And always benchmark!
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Overhead of pnd

How faster is calculating f (x+h)−f (x−h)
2h by hand than running dozens

of checks for user inputs?

Each call of Grad() adds 0.5 ms of overhead due to the
infrastructure; it increases with dim x. (To be improved!)

Compare the overhead of computing∇f ′CD,2 for
f (x) :=

∑dim x
i=1 x2 + 4 sin x + 1.1x in seconds:

dim X 1 10 100
Overhead 0.0005–0.0010 0.0008–0.0010 0.0038–0.0041

Is it acceptable in your practical application?
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Example: overhead in light functions

If there are no memory-heavy operations (cloning pages, passing
data to child processes), the run time is roughly proportional to the
number of cores.

f(x) <- {Sys.sleep(s); sin(x)}

Times for the Stepleman–Winarsky algorithm to terminate in
7 evaluations / 3 iterations. Ideally, 3 iterations = 3 parallel calls =
thrice the time of one call.

s 0.001 0.01 0.1 1

1 core 0.008 0.072 0.702 7.003
2 cores 0.038 0.091 0.456 4.061
3 cores 0.043 0.092 0.368 3.071
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Example: slow functions

Smoothed empirical likelihood with missing
endogenous variables (Cosma, Kostyrka,
Tripathi, 2025). Maximising SEL + computing
∇2-based std. errors via BFGS on 4 cores.

 0.9999 

 0.999 

 0.99 

 0.95 

 0.9 

 0.75 

 0.5 

 0.25 

g4 <- function(x) Grad(SEL, x = x,
acc.order = 4, cores = 4)

optim(par = c(1, 1), SEL, gr = g4, method = "BFGS")

Method Ord. Time, s ∥∇SEL∥ Evals Iters

built-in 2 21+3.8 3.6 · 10−4 46 10
pnd 2 13+1.5 2.1 · 10−7 37 10
pnd 4 16+2.9 3.3 · 10−8 32 10
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Available algorithms

1. Plug-in

2. Curtis–Reid (1974) and its modification (2025)

3. Dumontet–Vignes (1977)

4. Stepleman–Winarsky (1979)

5. Mathur (2012)

6. Kostyrka (2025)
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Improvements for the CR algorithm

1. Estimate the correct truncation error order with 4 parallel
evaluations and use the theoretically correct target ratio

• Instead of ‘truncation error = rounding error’, use the optimal
‘truncation error = rounding error halved’ rule

2. Obtain f ′CD,4 with algorithmically chosen h∗
CD,2 times 120

• ≈ 3 times more accurate than theoretical
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Improvements to the AutoDX algorithm

Developed by Ravishankar Mathur (2012, Ph .D. thesis).

• The finite differences may be evaluated on the entire grid on a
multi-core machine

• The user may plot the behaviour of the approximated total error
as an added bonus
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Comparison of median run times

Grid: 9000 exponentially spaced points between 10−3 and 106

(exception: 3000 points in [10−2 . . . 101] for exp x).

Unit: millisecond per step size per grid point + derivative estimation.

Func. h∗CD,2 |x|√ϵmach CR CRm2 CRm4 DV SW M

sin x <0.01 <0.01 0.18 0.16 0.20 0.46 0.33 1.70
exp x <0.01 0.02 0.15 0.15 0.15 0.26 0.18 1.72
log x <0.01 0.01 0.15 0.11 0.15 0.17 0.27 2.09√

x <0.01 <0.01 0.16 0.11 0.15 0.16 0.14 2.13
tan−1 x <0.01 <0.01 0.14 0.11 0.17 0.19 0.42 1.69
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Comparison of median absolute errors

Error: |f ′(x)− f ′CD,2| for 9000 exponentially spaced points between
10−3 and 106 (exception: 3000 points in [10−2 . . . 101] for exp x).

Short exponential notation: 5.6e-9 = 5.6 · 10−9.

Func. h∗CD,2 |x|√ϵmach CR CRm2 CRm4 DV SW M

sin x 5.7e-11 2.6e-09 1.2e-09 1.2e-10 2.3e-11 1.1e-09 3.0e-11 5.1e-10
exp x 1.5e-11 2.6e-08 2.2e-10 5.7e-11 1.3e-11 3.7e-09 1.4e-11 2.7e-09
log x 1.3e-12 0.0e+00 5.6e-12 1.7e-12 1.6e-13 1.3e-11 5.3e-13 1.0e-10√

x 2.1e-12 2.7e-10 9.3e-12 2.4e-12 2.4e-13 3.7e-11 8.2e-13 1.5e-10
tan−1 x 6.8e-13 5.9e-11 3.5e-13 2.2e-13 2.7e-14 7.8e-13 1.6e-13 9.6e-12
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Logic behind the best methods

• Curtis–Reid (1974) + my modification #2: use 4 available
intermediate points and function values from truncation and
rounding error estimation to obtain a 4th-order-accurate
estimate (unlike 2)

• Stepleman–Winarsky: the truncation error should be quartered if
the step size is halved⇒ start at a step size larger than the best
guess and halve it until the decrease is substantially different
from 2 due to rounding errors

• I added a safety step for checking finiteness and extra warnings for
edge cases

• Mathur: SW-like evaluation for many points simultaneously +
diagnostic plots available
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