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Motivation and use cases



Contribution

1. Iwrote an R package — pnd — for fast, parallelised numerical
differentiation
- First open-source parallel Jacobians, Hessians and
higher-order-accurate gradientsin R
- limplemented 6 algorithms for step-size selection and
benchmarked their performance
- You will see this benchmark

2. lam currently working on 3 papers on the topic: a survey and two
algorithmic ones

- Working paper: Kostyrka, A. V. Step size selection in numerical
differences using a regression kink. Department of Economics and
Management discussion paper 2025-09, University of Luxembourg.

https://hdl.handle.net/10993/64958
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Motivation

- Researchers rely on optimisers, algorithms, black boxes etc., and
the end result depends on the solver quality

- Most popular modern optimisation techniques use numerical
gradients for minimisation or maximisation

However, most software implementations yield inaccurate and slow

numerical derivatives.

Consequences: inexact solutions, negative variances, invalid

statistical inference etc.
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Example from a financial application

AR(1)-GARCH(1, 1) model for NASDAQ log-returns, 1990-1994:

Vt:/,L+th_1 +UtUt, Uf:w+an_1 +5O—I‘2—1

Coefficient Est. t-stat t-stat
rugarch fGarch

1 0.0007 2.34 2.31

p 0.24 7.77 7.73

w x 10° 0.0098 NaNor 65 3.09
default fallback

a 0.13 1.1 4.27

I5; 0.73 39.6 10.9

NaN due to negative variance!

3/19



Existing literature / software

- Gilbert & Varadhan (2019). numDeriv: Accurate Numerical
Derivatives.
cran.r-project.org/package=numDeriv

- Non-parallel version without vignettes or derivations

- Gerber & Furrer (2019). optimParallel: An R Package Providing a
Parallel Version of the L-BFGS-B Optimization Method. The R
Journal 11 (1).
cran.r-project.org/package=optimParallel

- Limited to the built-inoptim(method = "L-BFGS-B")

- Algorithms for numerical derivatives from the 1970s have
remained dormant... until now
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cran.r-project.org/package=numDeriv
cran.r-project.org/package=optimParallel

Marrying numDeriv + optimParallel functionality




Selling point of pnd

Compare the software: numerical derivative error for f(x) = sinxon
an exponentially spaced grid between 0.01and 10 000.

® pnd CRm ® numDeriv ® numdifftools Erreur totale
102 7 ® pndSW @ NumPy Scilab /
| ® pndK @ SciPy /

Solid: 2 evaluations, dashed: >2 evaluations (incomparable).
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Approximations of analytical derivatives



Derivative estimation via central differences

—_— f
---- Vraie tangente
— — Diff. centrale

f(x) =%, x0 =1
. f,(XO) — 3
- Stepsizeh = 0.2

- f{5(x0,0.2) = 3.04
Error~1.3%
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Higher-order accuracy of first derivatives

Better accuracy is achievable with more function evaluations.
Carefully choose the coefficients to eliminate the undesirable terms:

_ —f(x —h) 4+ f(x + h)

, 2
f 2 o)
o
o (= 2h) 80— ) 4 8 0) x4 20) o
12h
o

- pnd: :£dCoef () computes stencils and weights for arbitrary
derivative orders and accuracy orders

- These 4 evaluations can and should be parallelised
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Efficient parallelisation of gradients

Example: V(x3x), evaluation grid {x + h, x & 2h} for 4"-order
accuracy. Total: 12 evaluations.

1 8 8 _ 1

\W1:E Wo="3% Ws=3 Wa="3%
xO [ f(x —2m)  f(x—h) f(x+h1) f(x + 2h)
XO | f(x—2h) f(x—hy) F(x+hs) flx+2h)
xC) | f(x —2hs) f(x —hs) f(x+hs) f(x+ 2hs)

- Createalist of length 12 containing x + bjh;

- Apply f in parallel to the list items, assemble
{{f(x+ b))}, };:1 in a matrix

- Compute weighted row sums
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Step-size selection algorithms



Total error in numerical derivatives

Step size selection is critical for accuracy:
- htoo large — large truncation error from the remainder
Taylor-series term (poor mathematical approximation)

- htoo small — large rounding error (poor numerical
approximation): catastrophic cancellation, division of something
small by something small, machine accuracy limited by €ach

- h near-optimal — the two errors are balanced

One good step size with one difference is better than 3 bad step sizes
with refinements and extrapolations!
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Approximation error to minimise

f(x) :=x*+cosx+exp(x —1), x,=17/4,

—— Meéthode
—— Donnée

—_

o
w
|

Err. tot. de la dériv. num.

f'(x0) =7

Pas de dérivation




Using the analytical error estimate

Total-error function: conservative absolute-error bound.

RN [ O] PN ) S T T
6 h ()
—— N——

truncation rounding

- Estimate f"’(x) using any reasonable h(e. g.0.001)

Grad(FUN = £, x = x0, h = "plugin")

- Dumontet-Vignes (1977) proposed an iterative search algorithm
for a better estimate of f"(x)

Grad(FUN = £, x = x0, h = "DV")
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Controlling the error ratio

Observation: when the truncation error and the rounding error are
similar, the total error is close to minimal.

Curtis & Reid (1974) proposed choosing h such that

over-estimated e ync

€ [10,1000] (rule of thumb: 100)

€round

euunc ~ forward minus central differences (too conservative!),
€round ~ 0.5|f(X)|€mach/h. The RoT ensures that eqyne * €round-
- | created a modified variant with more accurate estimates

Grad(func = £, x = x0, h = "CR")
Grad(func = x0, h "CRm")

1l
Hh
X
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Controlling the truncation-branch slope

Stepleman & Winarsky (1979) and Mathur (2012) propose similar
algorithms based on the idea of descending down the right branch of
the estimated combined error:

- The slope of the right branch of the combined erroris a

- Choose hg large enough, set h; = 0.5h,, get the truncation error
estimate from f{y(x, hy) and f5(x, ho)

- Continue shrinking while the slope of the truncation branch is
~ 2; stop when it deviates due to the substantial round-off error

Grad(f, x = x0, h = "SW")
Grad(f, x X0, method = "M")
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Fitting the check function (new & experimental!)

The total error looks (in logarithmic axes) like the letter V.

- The left, rounding branch is due to division by h? = slope = —d
- Theright, truncation branch is due to the remainder in the Taylor

series that is approximately a multiple of h® = slope=a

Fita check function (v') with known slopes —d and @ and unknown
horizontal and vertical shifts to find the approximate minimum of
the error.

Grad(f, x = x0, h = "K") # For "kRink"
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Showcasing pnd



Compatibility with numDeriv

numDeriv remains the most popular R package for non-parallel
computation of accurate derivatives without step-size selection.

Simply replace the first lowercase letter with an uppercase one.

numDeriv pnd
grad(f, x) Grad(f, x)
jacobian(fvector, x) Jacobian(fvector, x)
hessian(fscalar, x) Hessian(fscalar, x)
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User-friendliness and thoroughness of pnd

pnd numDeriv
- Catches 74 errors (so far) - 19 errors
- Prints 44 foreseen warnings - Zero foreseen warnings
(so far) . Only 3 possible function
- Supports 5 possible configurations
configurations of function - One-stage input check, only
properties and capabilities one error check
- Multi-stage input checks . Impossible to obtain
with error handlingand Jacobians forcertain
possible parallelisation functions (e. g.
. . [ H !/
- Handles arbitrary stencils f(x) := (sinx, cosx)’)

- No user controls
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Error of step-selection methods for f(x) := sin x

Evaluation grid: x € [0.1,12.5],70 000 points.

R "| ® CRmod. Stpl-Win. @ Kostyrka
10 ° -| ® Dum.--Vign. ® Mathur

Absolute total error
5
&
|

Evaluation point

The orange line is obstructed by the blue one.
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Further work

- Testimprovements for the step-size selection algorithms

- Add memoisation to reuse function values for more accurate
derivative estimates

- Respond to users’ failing examples and fix bugs
- Unit tests < user feedback and reproducible errors
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Practical recommendations

Do not:

- Setstepsizeh = 0.01
because it ‘feels right’ or
you interpreta1-¢ change

- Use forward differences
when evaluating f is fast

- Request 24 cores for quick
functions (overhead!)

- Skip step-size search when
gradients are the object of
interest

Do:

- Supply function information to
skip checks
GenD(...,
elementwise = ...,
vectorised = ...,
multivalued = ...)

- Use optimal-step search

- Use all CPU cores only if f takes

longerthan 0.02's

- OnWindows: create a cluster and
passitto Grad () /
Jacobian()
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Thank you for
your attention
and feedback!

github.com/Fifis/pnd
andrei.kostyrka@gmail.com


https://github.com/Fifis/pnd

Function and its derivative accuracy comparison

- The vast majority of function evaluations on a computer are lossy
due to finite memory, even linear transformations

. Each operation typically addsa ~ 107 relative error (at least)

- Numerical derivatives are much less accurate than function
values

- ...by afactorof ~100 000 in the best case!

- Many software packages settle fora x10 000 000 accuracy
degradation

- ..which isworse /100 times than it could have been
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Non-existent literature / software

- Most modern articles focus on ultra-high-dimensional numerical
gradients with much fewer evaluations
- Only one (!) paper (Mathur 2012, Ph. D. thesis) with a comprehensive
treatment of the classical case useful for low-dimensional models
- Existing algorithms (Curtis & Reid 1974, Dumontet & Vignes 1977,
Stepleman & Winarsky 1979) lack open-source implementations
- Popular software packages implement very rough rules and do not
refer to any optimality results in the literature
- Most implementations of higher-order and cross-derivatives are
through repeated differencing
- Slower and less accurate than a one-time weighted sum
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Partial solutions

- RpackagesnumDerivandoptimParallel

- numDeriv: the most full-featured arsenal in terms of accuracy, but
slow; optimParallel: speed gains but no focus on accuracy

- Pythonsnumdifftools

- Discusses Richardson extrapolation; no error analysis
- MATLAB's Optimisation Toolboxxt

- Focuses on parallel evaluation, not accuracy

- Stata'sderiv
- Implements a step-size search to obtain 8 accurate digits
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Higher-order accuracy of m™-order derivatives

Stencil: strictly increasing sequence of real numbers: b; < ... < b,.
(Preferably symmetricaround O for the best accuracy.) Example:
b=(-2,-1,1,2).

Derivatives of any order m with error O(h?) may be approximated as
weighted sums of f evaluated on the evaluation grid for that stencil:
X+ bh, ..., x+ b,h.

With enough points (n > m), one can find such weights {w;}"__, that
yield the a"-order-accurate approximation of f("), wherea < n — m:

dm m a
() =h" Zw, (x + bih) + O(h")
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Gradient of a function

Gradient: column vector of partial derivatives of a differentiable
scalar function.

Vf(x) =

- Vector input x + scalar output f = vector V

- Atany point x, the gradient—the d-dimensional slope —is the
direction and rate of the steepest growth of f

‘A source of anxiety for non-mathematics students.
J. Nash, ‘Nonlinear Parameter Optimization’ (2014).
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Jacobian of a function

Jacobian: Matrix of gradients for a vector-valued function f.
Ifdimx =d,dimf =k,

VTf(1)(X)
Vi) = (200 - ) =

VTf(k)(X)

kxd
- Vector input x + vector output f = matrix V
- In constrained problems, most solvers (e. g. NLopt) for min, f(x)

s.t.g(x) = Orequire an explicit Vg(x)

Including incorrectly computed derivatives (mostly gradients or Ja-
cobian matrices) <...>explains almost all the ‘failures’ of optimisa-
tion codes | see. (Idem.)

25/19



Hessian of a function

Hessian: Square matrix of second-order partial derivatives of a
twice-differentiable scalar function.

_of ... _Of
azf d Ox(M ox(1) Ox(M) Hx(d)
=Gt —| ¢ |
Mox® | . : ' :
OXVOXD J 1 of .. _0f
Ox(d) 9x(M) Ox(d) Hx(d)

The Hessian is the transpose Jacobian of the gradient:
VEf(x) = VI[VF(x)]
- Vector input x + scalar output f = matrix V2

- If Vfis differentiable, sz is symmetric
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Numerical Hessians via central differences

Leth;:=(0...0_h 0...0)andx;_ :=x+h — h;.
~—
ith position

4 evaluations of f are required to approximate ngvia CD:

Vif(x) = [VI(Vf(x))], = V}eof (x) + O(h) =

CFxes) = Fx—g) = F(x-) +F(x--) 2
= e + O(h?)

- The 4-term sum is as fast as the 4-term V"f(x”’f)z‘hw(x—hj)’
]

but guaranteed to be symmetric: Vi o, = Vi
- Symmetric repeated differences require 8 terms

- Accuracy implications are being investigated
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Total error function properties

On the log-log scale,
- The slope of the left branch is the differentiation order m
(times —1)
- The rounding error of the difference is divided by h™

- The slope of the right branch is the accuracy order a
- The truncation error is approximately f”-- /a! times h”
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Optimal step tips and tricks

Rules of thumb to help one save time and obtain more useful
quantities once they have determined hp ,"
1/4 1/12

- Since hgp , o €macns p 2/ N4 X Emach-
Multiply hCD , by~20 forareasonable step size for second

derivatives (f” )
- Logic: higher derivation order = division by h* instead of h =
higher rounding error = increasing h* to reduce it

% 2/15
- Similarly, hep , =oc Emach'hCD 2/epa X Ernach-

Multlply h¢p 2 by ~100 fora reasonable step size for
4th_order-accurate first derivatives (f’ but better)

- Logic: higher approximation order = more points = smaller
truncation error at hip , = increasing h™* to reduce the rounding
error
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Optimal step troubleshooting

- Ifthe function is quasi-quadratic, f” ~ 0,f"" ~ 0, ..., then, the
step-size search might be unreliable
- Happens at the optima of likelihood functions in large samples
- Solution: use the fixed step \/€mach max{|x|,1} after checking
diagnostic messages
- Typical error: step size too large after dividing by f”, solution at the
search range boundary, or solution greater than |x|...

- Ifthe function is noisy / approximate, multiply h¢y, , by 10 per
3 wrong digits of f
- If f(x) has numerical root search, optimisation, integration,
differentiation, etc., |f(x) — f(x)|/|f(x)| > 0 by more than emach
- In general, replace €mach in the total-error formula with the
maximum expected relative error = h becomes larger with more
wrong decimal digits

30/19



Paradigms for step-size search

1. Theoretical (plug-in expressions)

2. Empirical (finding the minimum of the total error)

pnd, provides multiple algorithms (currently under active feature

implementation and testing).

Analogy: Silverman’s rule-of-thumb bandwidth vs. data-driven
cross-validated bandwidth in non-parametric econometrics.
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Overhead magnitude

- Requesting 2 cores for a parallel job: ~0.01s
- 0.3-0.4 s on Windows due to its inability to fork effectively!

- Extra per-core time with pre-scheduling: ~0.005s

- Plus extra time losses for communication between cores

- If one evaluation of f takes <0.01s, compare the gains: reduction
of the number of tasks vs. overhead per core

- If one evaluation of f takes 0.005-0.010 s, compare the gains:
reduction of the number of tasks vs. overhead per core

Timeperf 0.002 0.005 0.01 0.02 0.05 0.1 > 0.2
Use cores 1 23 4 8 12 16 > 24

Long gradients = always parallelise! And always benchmark!
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Overhead of pnd

How faster is calculating (XH')Z# by hand than running dozens

of checks for user inputs?

Each call of Grad () adds 0.5 ms of overhead due to the
infrastructure; it increases with dim x. (To be improved!)

Compare the overhead of computing V¢, fi
f(x) == 9™ X2 4 4sinx 4+ 1.1%in seconds

=1

dim X 1 10 100
Overhead 0.0005-0.0010 0.0008-0.0010 0.0038-0.0041

Is it acceptable in your practical application?
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Example: overhead in light functions

If there are no memory-heavy operations (cloning pages, passing
data to child processes), the run time is roughly proportional to the
number of cores.

f(x) <- {Sys.sleep(s); sin(x)}?

Times for the Stepleman—-Winarsky algorithm to terminate in
7 evaluations /3 iterations. Ideally, 3 iterations =3 parallel calls =
thrice the time of one call.

S 0.001 0.01 0.1 1

1core 0.008 0.072 0.702 7.003
2cores 0.038 0.091 0.456 4.061
3cores 0.043 0.092 0.368 3.071
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Example: slow functions

Smoothed empirical likelihood with missing
endogenous variables (Cosma, Kostyrka,
Tripathi, 2025). Maximising SEL + computing
VZ-based std. errors via BFGS on 4 cores.

g4 <- function(x) Grad(SEL, x = x,
acc.order = 4, cores = 4)
optim(par = c(1, 1), SEL, gr = g4, method = "BFGS")

Method Ord. Time,s ||VSEL|| Evals Iters

built-in 2 21438 3.6-107* 46 10
pnd 2 1315 21-1077 37 10
pnd 4 16+29 33-10°8 3210
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Available algorithms

A T

. Plug-in

Curtis—Reid (1974) and its modification (2025)
Dumontet—Vignes (1977)
Stepleman—Winarsky (1979)

Mathur (2012)

Kostyrka (2025)
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Improvements for the CR algorithm

1. Estimate the correct truncation error order with 4 parallel
evaluations and use the theoretically correct target ratio

- Instead of ‘truncation error = rounding error’, use the optimal
‘truncation error = rounding error halved’ rule

2. Obtain f¢, , with algorithmically chosen hg;, , times 120
. & 3 times more accurate than theoretical
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Improvements to the AutoDX algorithm

Developed by Ravishankar Mathur (2012, Ph .D. thesis).

- The finite differences may be evaluated on the entire gridon a
multi-core machine

- The user may plot the behaviour of the approximated total error
as an added bonus
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Comparison of median run times

Grid: 9000 exponentially spaced points between 10~2 and 10°

(exception: 3000 pointsin [1072...10"] for exp x).

Unit: millisecond per step size per grid point + derivative estimation.

Func.  hip, |x[\/émach CR CRm2 CRm4 DV SW M
sin x <0.01 <0.01 0.18 016 0.20 0.46 033 170
exp x <0.01 0.02 0.15 0.15 015 0.26 018 172
log x <0.01 0.01 0.5 0.M 015 017 0.27 2.09
VX <0.01 <0.01 0.16 0.Mm 015 0.16 014 2.3
tan~'x <0.01 <0.01 0.4 0.M 017 019 042 1.69
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Comparison of median absolute errors

Error: |f'(x) — f¢p ,| for 9000 exponentially spaced points between
102 and 10° (exception: 3000 pointsin [10~2...10'] for exp x).

Short exponential notation: 5.6e-9=5.6 -10~°.

Func.  hi, Xl\/@man ~ CR CRm2 CRm4 DV SW M

sin x 5.7e-11  2.6e-09 1.2e-09 1.2e-10 2.3e-11 1.1e-09 3.0e-11 5.1e-10
exp X 1.5e-11  2.6e-08 2.2e-10 5.7e-11 1.3e-11 3.7e-09 1.4e-11 2.7e-09
log x 1.3e-12 0.0e+00 5.6e-12 1.7e-12 1.6e-13 1.3e-11 5.3e-13 1.0e-10
VX 2.1e-12  2.7e-10 9.3e-12 2.4e-12 2.4e-13 3.7e-11 8.2¢-13 1.5e-10
tan”'x 6.8e-13 5.9e-11 3.5e-13 2.2e-13 2.7e-14 7.8e-13 1.6e-13 9.6e-12
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Logic behind the best methods

- Curtis—Reid (1974) + my modification #2: use 4 available
intermediate points and function values from truncation and
rounding error estimation to obtain a 4™M-order-accurate
estimate (unlike 2)

- Stepleman—Winarsky: the truncation error should be quartered if
the step size is halved = start at a step size larger than the best

guess and halve it until the decrease is substantially different
from 2 due to rounding errors

- ladded a safety step for checking finiteness and extra warnings for
edge cases

- Mathur: SW-like evaluation for many points simultaneously +
diagnostic plots available
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