
Empirical research
in economics, finance, and management using R:
Essentials, real examples, and troubleshooting

Compiled from session02.tex @ 2024-04-26 16:57:48+02:00.

Day 2: Getting started with R

Andreï V. Kostyrka
20th of September 2023

Quick recap

We learned:

• How computers ‘memorise’ things and ‘compute’ results,
and what they sacrifice in the process

• What features exist out there in popular statistical
packages

• How some things feel in object-oriented programming
languages, and how there is no royal road

Today, we do the first systematic steps.

Safety first: we start by learning how things ought to be
organised in general.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 1 / 124

Presentation structure

1. Best practices in programming

2. R and its ecosystem

3. Working without and with interface

4. Basic operations and data types in R

5. Getting help

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 2 / 124

Best practices in programming

Good problem-solving practices

• No partial band-aid solutions, no kludges
• Dig to the bottom: If something is fundamentally flawed,
address the core issue, be prepared for going down the
rabbit hole

• In economic research, the problem is rarely superficial
or solvable with cosmetic changes
• ‘my grid is not fine enough’, ‘my bandwidth is too small’,
‘I don’t like how these 3 observations look like outlie

rs’ =
bad science!

• Could be a bug in your code or the R package (we learn
how to dig deeper in Session 4)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 3 / 124

Rubbish in, rubbish out

• Problems can appear at any stage of research
• Constantly monitor the analysis workflow
• Check the visuals (first and foremost!) and descriptives
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 4 / 124

Bad coding practices

• Spaghetti: unstructured, messy, disorganised code
• Obfuscation: using strange and unusual tricks or
abusing language features, creating cryptic and
error-prone code
• Check out IOCCC submissions

• Monolithic, inflexible goliaths
• No ‘too big to fail’; a straw will break the donkey’s neck
• However, dozens of one-line functions are also bad

• Not doing checks and tests
• Especially important in economic data sets: education
(in years) can be 0, …, 21 (or so); the values ‘999’ or ‘-1’
mean ‘something is wrong!’

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 5 / 124

https://www.ioccc.org/

‘I hate reading other people’s code!’
Credit: Abstruse Goose (2012).

Code comments

• More comments ≠ better: comprehensiveness is the
enemy of comprehensibility

• Comments contain bugs and may become obsolete

Checks that the sample size is at least 80

if (n >= 100) {

<apply a simplified formula>

}

• There are tests, parsers, linters etc. for code – but
nothing for comments

• Comments can lie, but code cannot

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 6 / 124

Documentation ≠ comments

• Write documentation: high-level architecture
• How one should use the code, which principles and
methods are employed

• Say what a function represents, expectation of input and
output types, reasons why it may fail
• Example: ‘If 𝑛 > 1000, may take minutes to run. Reduce the
search tolerance for a speed up.’

• In R: Roxygen (only a brief mention)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 7 / 124

Comments are still useful

• Comment non-trivial parts

This hard-coded lookup works 3x faster in most cases

and returns results accurate up to sqrt(doubleeps)

https://stackoverflow.com/questions/42617883/

why-sampling-matrix-row-is-very-slow

• If you got inspiration or borrowed code or a popular
algorithm from somewhere else, refer to the source

ISO calendar algorithm from

https://webspace.science.uu.nl/~gent0113/calendar/

isocalendar_text_5.htm

• If one needs human language to describe your code,
maybe they should write more human code

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 8 / 124

Do not try to be funny in code or comments

• The person who reads your code knows nothing about
the entire project

• Respect the person reading the code (and their time)
• Do not write obscenities

Infamous fast 1/√x (by Gary Tarolli?) in C (simplified):

float Q_rsqrt(float x) { // <...>

// evil floating point bit level hacking

i = * (long *) &x; //

i = 0x5f3759df - (i >> 1); // what the f*ck?

y = * (float *) &i;

return 0.5F * y * (3.0F - x*y*y);

}

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 9 / 124

KISS principle

‘Keep it simple, stupid!’ (1960, K. Johnson, Lockheed)

‘Keep it short and simple!’ (1938, Minneapolis Star)

A jet aircraft must be repairable by an average mechanic in
the field under combat conditions with few tools.
Stupid = relationship between the way things break and the
sophistication available to repair them.

• DRY: don’t repeat yourself (Hunt & Thomas, ‘The
Pragmatic Programmer’, 1999)

• Fail fast instead of failing silently (stops error
propagation)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 10 / 124

KISS example

I once won the first place in my university’s poker AI
competition. We had 2 hours to build a bot.
I was a freshman and had no idea what I was doing.
My algorithm was literally 2 lines.

if isMyTurn:

goAllIn()

It broke all the other bots, who started folding every
single time.

versaceblues on Reddit

Not justification for obfuscation, skipping input checks, or
extreme golfing! Simple ≠ unsafe or haphazard.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 11 / 124

UNIX design philosophy

• Make each programme / function do one thing well
• Make it easy to test and run programmes

• Write programmes to work together / handle streams
• Expect the programme output to become input to another
(unknown) programme

• Do not hesitate to throw away and rebuild clumsy parts
• Use tools in preference to unskilled help, even if you
have to build them for a single run
• Your inputs may change at any time, requiring
re-calculation

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 12 / 124

Distinguishing similarities

• Like all adequate programming languages, R is
case-sensitive: var, VAR, and VaR = 3 distinct objects
• Case-insensitive languages are inadequate (1950s
punchcard legacy, fewer holes to punch)

• Windows file paths are not case-sensitive – on other
systems, luckily, they are

• Many varieties of quotation marks:
' ≠ " ≠ “ ≠ ” ≠ „ ≠ ‘ ≠ ’ ≠ `
• Attention when copying and pasting formatted text (text
processors, pretty Web pages)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 13 / 124

Line wrapping

Each new expression that represents a separate operation /
instruction should start from a new line.

In rare cases, single-line statements with semicolon
separation could be acceptable:

f <- function(x)

{colnames(x) <- c("Time", "Unit"); return(x)}

However, the use of ‘;’ is highly discouraged. This is the
recommended way:

f <- function(x) {

colnames(x) <- c("Time", "Unit")

return(x)

}

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 14 / 124

Nested-structure indentation

Nested structures look better when formatted with a
different number of spaces (like physical nested boxes):

n <- 10 # Outer level

for (i in 1:n) { # 1st nest

−→cat("=== Counting up to", i, "===\n")

−→for (j in 1:i) { # 2nd nest

−→−→cat("i=", i, ", j=", j, "\n", sep = "")

−→−→s <- i + j

−→−→f <- qf(0.95, df1 = i, df2 = j)

−→−→cat("Their sum is", s, # 3rd level

−→−→−→"and 95% F crit. val. is", f, "\n")

}

}

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 15 / 124

Two styles of indentation

Style 1: consistent spacing (each new level = 2, 4,
or 8 spaces, or 1 tab) – easy to achieve with styling tools:

cat("Their sum is", s, # Using 2 spaces

"and 95% crit. val. is", f, "\n") # everywhere

Style 2: arguments aligned to logical parts (requires more
context-dependent user input):

cat("Their sum is", s, # Comments are

"and 95% crit. val. is", f, # aligned, too

"\n")

In either case, do not nest too deeply (unless writing in
Python, where it is a ‘feature’).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 16 / 124

Object naming rules in R

• Names may contain letters, digits, ., and _
• In Python, df.head() applies the head() function to df.
In R, . makes no call (one would write head(df))

• Names can start only with a letter
• x, x1, x.y, x.1, x_1 are valid
• x@, 2x, _x are invalid; 1e5 is a number (100 000)
• Be consistent: my.cool.name vs. their.ugly_name

• Names starting with a dot (not followed by a digit) make
objects hidden
• Do not use .x unless you are a developer

• Dots in names are occasionally used to call S3 methods
(wait until Session 4)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 17 / 124

Naming conventions

No standard guidelines, but…

google.github.io/styleguide/Rguide.html

• Name non-functions and functions differently:
my.data vs. prepData()
• In these slides, functions have brackets and highlighting

• Name iterators i, j, k (or ii etc.)
• But do not forget which ones are already in use

• Do not name objects temp, xx, res, asdfghjkl etc.

Give short names to frequently used objects, give
human-readable names to create self-documenting code.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 18 / 124

https://google.github.io/styleguide/Rguide.html

A bit ahead of pace: Why naming matters

Badly named objects may get overwritten unintentionally.

i <- 101 # Number of regions in France

t <- 8 # Years in the data set

d <- read.csv("french-census.csv")

<..Iteratng from the baseline model..>

mod <- lm(mortality ~ winepercapita, data = d)

for (i in 1:5) mod <- coolMethod(data = d,

init.val = coef(mod))

for (k in 1:i) { # And now -- loop over regions

print(sum(d$region == k)) # Oversight!

}

The variable i is now equal to 5!
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 19 / 124

Borrowing others’ code

• Online tutorials, StackExchange, ChatGPT etc. are
amazing resources for getting help with a fragment of
your research

• However, it is easy to borrow others’ bugs or mistakes
• Your research is as accurate (at most) as the most
inaccurate and error-prone part of the code

• Give credit where it is due
• Sometimes, one cannot borrow due to licence restrictions /
patents / copyright

• Reuse popular methods, but to not plagiarise others’
research

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 20 / 124

Any questions on good programming practices?

Office hours revisited

• Office hours, as per the syllabus, seem outdated in the
context of this technology-focused course

• Moodle does not encourage information exchange
• Group chats are a reasonable way for all participants to
share their experience, ask questions, get answers, and
everybody see those Q&A

Should we create a dedicated group chat for R code /
problem exchange for your research, or is it unnecessary?

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 20 / 124

R and its ecosystem

R console interface

• Big scientific calculator
• Scroll history with /

• Auto-complete with (TAB)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 21 / 124

R workspace

• The workspace is your current R working environment
• Includes any user-defined objects (vectors, matrices,
data frames, lists, functions)

• Global environment: built-in functions
• The entire environment can be saved as an image (all
objects)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 22 / 124

Packages

Confusing terminology:

1. ‘package’ as in ‘statistical package’ (e. g. Stata, Matlab)
2. ‘package’ as in ‘module’, ‘library’, ‘extension’, ‘framework’
(we use this definition)

Package / library: a set of functionalities written by
someone else that can be imported and reused.

Popular programming languages have lots of libraries in
centralised repositories (repos). TEX: 6500 (CTAN), R: 20 000
(CRAN), Rust: 120 000 (crates.io), Perl: 215 000 (CPAN),
Python: 475 000 (PyPi), JavaScript: 2 500 000 (npm)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 23 / 124

Where to get R packages

• The Comprehensive R Archive Network (CRAN) – default
• install.packages("packagename")

• From other people’s code repositories
• From downloaded compressed or archives
• Or even write your own ones!

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 24 / 124

Versions of R

• 3-part semantic version: x.y.z
• x = major release (huge, potentially breaking changes), y =
minor release, z = patch

• Multiple versions of R can be installed at the same time
• One can easily set a specific version as the default one
• R is relatively stable; 3.5.3 from 2019 works fine in 99%
cases

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 25 / 124

R user packages

• 20 000 as of the moment of writing
• Stand-alone or families (e. g. tidyverse)
• Even more if unofficial repositories are counted

• Most written in base R, some require compilation
• Windows users get pre-compiled binaries or can choose to
compile them with Rtools (compilers + libraries)

• Linux and Mac users compile from source automatically
(potentially better performance with processor instruction
set optimisation)

• Are often called ‘libraries’ (cf. library(foreign) vs.
update.packages()

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 26 / 124

https://cran.r-project.org/web/packages/

How to enable package capabilities

Installing: install.packages("AER") fetches it from the
web repository and writes onto the hard drive (or click Tools
→ Install Packages in RStudio). Do it only once!

AER provide the ivreg() function. By default, upon fresh
start, no packages are loaded into the memory; simply
running ivreg() after installation produces an error.

Loading: to use ivreg() from AER, one has to ‘activate’ the
package after it has been installed:
library(AER)

Then, ivreg() becomes available.

Alternative: without library(), write AER::ivreg().
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 27 / 124

Package versions

• By default, the most recent version of a package is
installed

• Package developers do not adhere to the x.y.z versioning
scheme

• Whenever a minor release of R is out (e. g. 4.2.3→ 4.3.0),
the packages are installed anew
• Example: with R 4.2.1, the packages are installed to the
local folder ‘4.2’

• Upgrading R 4.2.1 to 4.2.3 preserves all locally installed
packages, but 4.3.0 will create a new folder, ‘4.3’, and
cannot use anything installed for 4.2.z

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 28 / 124

Package installation paths

Default: subfolder in user’s home (can be changed).

• Get the paths by running .libPaths() in R

Windows:
C:\Users\YOURNAME\Documents\R\win-library\4.3

Mac:
~/Library/R/x86_64/4.3/library

Linux (including the Uni.LU HPC):
~/R/x86_64-pc-linux-gnu-library/4.3

Here, ~ denotes the user home folder (/Users/YOURNAME
on Mac, /home/YOURNAME on Linux).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 29 / 124

Getting the package version

After installation, the package will stay at the same version,
and will not be updated automatically.

However, on a different system, a later installation of a
package may introduce discrepancies in the output.

Check the package version:

packageVersion("AER")

Check the versions of all currently loaded packages:

sessionInfo()

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 30 / 124

File paths on Windows (1/2)

Windows separates file paths with \ (backslash) instead of /
(slash).

• A notorious deviation from the widespread convention
in programming

Use forward slashes on all systems (Windows, Mac, Linux):

Windows

d <- read.csv("C:/Users/avk/Desktop/db.csv")

Mac, Linux, UNIX-like

d <- read.csv("~/Desktop/db.csv")

Possible but bad: escaping backslashes on Windows.

d <- read.csv("C:\\Users\\avk\\Desktop\\db.csv")

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 31 / 124

File paths on Windows (2/2)

DOS legacy build-up since the 1980s: Windows may print
the 8.3 file path (8 name characters, abbreviated via ~, dot,
and 3 characters of extension).

Sys.getenv("R_HOME")

#> C:\PROGRA~1\R\R-43~1.0

#> Should be C:\Program Files\R\R-4.3.0

Most languages / systems are case-sensitive: a.txt,
A.txt, A.TXT, A.TxT are different files.

Not on Windows, which is case-insensitive (these 4 files
cannot co-exist in the same directory).

• Had a Dropbox ‘Case conflict’ with a Mac collaborator?

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 32 / 124

Why is Windows workflow so different

• Researchers have traditionally been working on UNIX
systems (AT&T, Bell Labs)
• Designed as a convenient platform for programmers
developing software

• Adopted in academic circles, experts sharing good tools
• macOS core (Darwin) and Linux are UNIX-compatible

• Windows is still relying on MS-DOS conventions
• Compatibility with 1979 86-DOS (QDOS) for 8086 kits
• Backslash: 1970 TOPS-10 mainframe quirks (reserved /) +
1981 IBM model F keyboard ergonomics + 1983 MS-DOS 2.0

• Pragmatism in 2023: big-data frameworks (servers, CPU
clusters, supercomputers) are only UNIX-compatible
• Even on MS Azure servers, Linux dominates (since 2019)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 33 / 124

Crucial aspect of R: vectors

In R, everything is a vector. Vectors can be

• Atomic (a set of elements of the same type)
• Lists (a collection of heterogeneous objects)

A vector is created with a one-letter command: c().

Type the following into the console:

c(1, 2, 5)

Like in mathematics by default, it is assumed to be a
column vector (even if it is printed as a line).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 34 / 124

Examples of atomic vectors

We talk about data types later, but for now, observe:

• An integer sequence from 1 to 100:
1:100

(the : operator creates integer sequences)
• A character sequence:
c("Als", "Gregor", "Samsa", "eines", "Morgens",

"aus", "unruhigen", "Träumen", "erwachte")

• A logical vector: c(FALSE, TRUE, TRUE, FALSE)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 35 / 124

Vectors and concatenation

The symbol ‘c’ stands for concatenation.

Vectors can be combined (i. e. concatenated):

c(1:3, 12:15)

It is not a mistake to wrap a vector into a vector (the
redundancy will be simplified):

1:3

c(1:3) # Same

c(c(c(c(c(1:3))))) # Ugly, but not a mistake

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 36 / 124

Installing from official CRAN repositories

Now that we know how to use vectors…

Install one or many packages at once:

install.packages("plm") # For panel models

install.packages(c("DEoptim", "hydroPSO"))

For Session 6, numerical optimisation

Installed something heavy? Remove it!

remove.packages(c("DEoptim", "hydroPSO"))

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 37 / 124

Package updates

Update everything installed: update.packages()

• If it ain’t broken, do not fix it
• Real case: readxl() from tidyverse threw an error and
broke the entire R installation (!)

• It required rlang >= 1.0.6 when 1.0.2 was installed;
upgrade failed because the DLL was locked

• If a full upgrade fails due to package A:
• Try upgrading A manually: update.packages("A")
• If the DLL is in use, reboot the computer and retry
• Remove the leftover LOCK directory:
C:\Users\YOURNAME\Documents\R\win-

library\4.1\00LOCK...

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 38 / 124

Installing from the CRAN archive

Real example: I wanted to install the np package (for
non-parametric methods), but it depends on cubature,
and I could not compile cubature v. 2.0.4.6 on one specific
machine. (Suppose that v. 2.0.4 works.)

Solution: all versions of all CRAN packages are archived!
cran.r-project.org/src/contrib/Archive/cubature

install.packages("devtools")

devtools::install_version("cubature",

version = "2.0.4")

Find the last version that works for you (assuming that the
old version interacts well with other dependencies).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 39 / 124

https://cran.r-project.org/src/contrib/Archive/cubature

Installing from GitHub

The devtools package has a convenient function to install
from GitHub.

If the repo is https://github.com/sachit27/greenR,
the command to install the package is

install.packages("devtools")

devtools::install_github("sachit27/greenR")

If prompted to update, type the number and press Enter.
(If you had previously installed devtools, there is no need to run the
install.packages("devtools") command again.)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 40 / 124

https://github.com/sachit27/greenR

Installing from GitLab

Similarly, there is a different command in the devtools
package to install from GitLab.

If the repo is https://gitlab.com/jimhester/covr,
the command to install the package is

devtools::install_gitlab("jimhester/covr")

(Assuming that devtools is installed.)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 41 / 124

https://gitlab.com/jimhester/covr

The tidyverse ecosystem

tidyverse: a collection of custom packages for data
manipulation and visualisation extending the functionality
of R greatly and providing new definitions.

install.packages("tidyverse") # Do not run yet

• Can be good for data cleaning and transformation
• Can be faster, can be slower; can hang or halt with large
data if more general good practice is neglected

• Syntax different from base R (is a dialect / custom
framework)

• Introduces a specific structure called tidy data
• Most packages cannot handle ‘tidy data’ = extra work
converting back and forth
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 42 / 124

tidyverse drawbacks

• Frequent breaking changes and deprecations
• Good for experimentation, but code rot is bad for research
• Changelog for dplyr is all ‘Breaking’, ‘Deprecated’,
‘Experimental’, ‘Removed’, ‘Superseded’

• Meta-layer that is hard to debug (too abstract)
• Unnecessarily complicated for a narrow set of operations
• Beginners make the most mistakes⇒ counterproductive
• Hard to craft an error-free chain in the first place

• Tutorials de-emphasise vectors and lists – the real
strength of R!
• Very limiting (‘a thousand gadgets’) without base R skills
• Hurts other high-quality or high-performance, or
specialised packages (jack of all trades = master of none)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 43 / 124

https://dplyr.tidyverse.org/news/index.html

Real-world problems are too serious

• Converting data with Arabic text from XLS to Stata DTA
• One needs a good tool to handle right-to-left writing
before encoding factors

• Impossible on Windows before R 4.2: legacy code pages
• Processing downloaded web pages en masse, parsing,
and scraping
• Too many page layout designs even on the same site⇒
custom-depth list traversal requires interactive checks

• Combining multiple fragmented data sets into a
complete one
• The structure is so different, tidy data is powerless

• Transformations with overlapping time windows
• data.table memory issues on large (1m+) data sets

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 44 / 124

Learning full R, not just tidyverse

No good ‘tidy’ way to do this fundamental operation.

A ‘tidy’-only approach to R teaches learners to do much less
with R than a standard R course in the same time.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 45 / 124

Dirty tidy code

General programming principles > tidy syntax subset.

This is a real code example from an online appendix to a
2021 article published in JoFi.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 46 / 124

https://github.com/arpitrage/Dividend_Strip/blob/master/Code/PEmodel/6_appendix.R
https://doi.org/10.1111/jofi.13073

base R: ⇒

tidyverse: ⇒

Those kids who used to play with bricks, grow up and
build transformers. Those who used to play with trans-
formers, grow up and build bricks. A. Lebedev.

Can packages conflict?

Masking: overlapping of functions with the same name
from different packages. Multiple masked functions may
co-exist without overwriting.

• lag() from base stats, panel lag() from plm

Namespace: a special environment for all the functions of a
package.

• In C++, std::cout with iostream

In case of function name conflict, call masked functions via
pkgName::funName.

stats::lag(...)

plm::lag(...) # Clearly different functions

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 47 / 124

Should I always use package X?

• For complex operations, yes
• For simple operations, search ‘how to X in base R’ first
• Often, search and tutorials suggest tidyverse
solutions, but it may (on many occasions) break things
• Avoid tidyverse (including ggplot) in favour of simpler
alternatives wherever possible

• data.table::fread() reads CSVs blazingly quickly, but
it enforces a custom class (data.table) that is often
incompatible with standard syntax (e. g. subsetting) and
requires conversions

• Most popular libraries (LASSO, XGBoost, random forests
etc.) require pure numeric matrix inputs – nothing else (no
lists, data.table’s, tibble’s, or other syntactic fluff)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 48 / 124

Do not over-rely on packages

• The diversity of the R ecosystem should not distract one
from implementing their own functions
• Spend 5 minutes writing a solution instead of 5 hours
searching for somebody else’s solution online

• There is no guarantee that what others wrote works well
or even correctly

• Cautionary tale: an 11-line package broke the Internet
• TL;DR: all because many programmers decided to import a
dependency that contained only one function that was
doing an extremely simple thing (and inefficiently!)

• Try breaking down the question into an algorithm (recall
Prof. Fortran peeling potatoes)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 49 / 124

https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/

Different packages = different syntax

• Different implementations may expect different input
types – keep the number of others’ functions to an
absolute minimum

• Always read the examples for a function from a new
package that you are about to use

• Example: lm() relies on formulæ, but glmnet() from
glmnet requires numeric matrices

lm(mpg ~ cyl + hp + wt, data = mtcars)

glmnet::glmnet(x = mtcars[, c("cyl","hp","wt")],

y = mtcars$mpg)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 50 / 124

Transition from other packages

Different software may have different syntax for the same
function – requiring a change of one’s mindset.

Stata: ivreg y x_incl (endog = x_excl)

R (AER package):

ivreg(y ~ endog + x_incl | x_excl + x_incl)

R (momentfit package, dedicated to GMM):

mod <- momentModel(y ~ endog + x_incl,

~ x_excl + x_incl,

vcov = "MDS")

tsls(mod)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 51 / 124

Any questions on R extension packages?

Working without and with interface

Software to install

IDE: integrated development environment; software that
highlights, checks code, helps in debugging and browsing.

1. Base R itself
• https://cran.r-project.org/
• Linux: better compile than fetch from repositories
(stability + performance)

2. RStudio (recently merged with Posit) download:
• https://posit.co

3. RTools
• Windows: install the binary

• cran.r-project.org/bin/windows/Rtools

• Mac: install Xcode command-line tools
• Linux: no need if R is compiled, otherwise r-base and
r-base-dev

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 52 / 124

https://cran.r-project.org/
https://posit.co
cran.r-project.org/bin/windows/Rtools

R sessions

Session: a running instance of R with the loaded packages
and data

• Sessions can use sub-processes (see later with
parallelisation)

• Sessions might crash under heavy loads (usually when
dozens of packages are loaded)
• Solution 1: try from console / batch
• Solution 2: work with smaller objects, do not load
packages copy-pasted from other projects

Once a package is loaded, it stays loaded unless the user
detaches it or removes its namespace.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 53 / 124

Scripts are the daily bread

• Script: plain text containing runnable instructions
• No need to click 100 GUI buttons – carpal tunnel syndrome

• R is an interpreted language
• Cannot output executables, but supports interactive
applications (e. g. HTML pages with clickable elements)

• Optimisations via the built-in just-in-time (JIT) compiler
• R itself is written in C and Fortran⇒ most functions wrap
the input arguments nicely for low-level functions

• Comments start with #
• R Markdown: a combination of output text and source
code (good for presentations), similar to Jupyter
• Can be rendered to PDF or HTML via knitr

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 54 / 124

Working directory

Working directory: the base path from which all relative
paths are constructed.

Always set the working directory! Compare:
d1 <- read.csv("C:/Users/Grzegorz Brzęczyszczykiewicz/Desktop/thesis/data/raw/base.csv")

cb <- read.csv("C:/Users/Grzegorz Brzęczyszczykiewicz/Desktop/thesis/data/raw/codebook.csv")

r2 <- read.csv("C:/Users/Grzegorz Brzęczyszczykiewicz/Desktop/thesis/data/raw/round2.csv")

versus
setwd("C:/Users/Grzegorz Brzęczyszczykiewicz/Desktop/thesis/data/raw")

d1 <- read.csv("base.csv")

cb <- read.csv("codebook.csv")

r2 <- read.csv("round2.csv")

When preparing a project for sharing, put everything in the
same directory and use relative paths (comment out the
setwd(...) line).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 55 / 124

Live demonstration time!

R is a great calculator – try typing this

2 + 2 # 4

exp(1) # 2.718282

sqrt(2) # 1.414214

2^0.5 # Same

2^(1/2) # Same

sqrt(2)^2 - 2

#> 4.440892e-16 -- kind of expected

pi # 3.141593 -- has 16 accurate digits

sin(pi)

#> 1.224647e-16

sin(pi/4 + 3*6)

#> -0.06411375

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 56 / 124

Mathematical functions in R

Arithmetic operations: + - * / abs(x)

Power-related: sqrt(2), 2^3, 2^(1/3),
exp(2.718), log(8), log(8, base = 2)

Division remainder (modulo): 107 %% 20 (remainder 7),
integer division: 107 %/% 20 (the result is 5)

Rounding: floor(x), ceiling(x), round(x), trunc(x)

Trigonometric: sin(x), cos(x), tan(x), atan(x), …

Special: Γ(𝑥) = gamma(x), (
𝑘
𝑛
) = choose(n, k)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 57 / 124

Accurate log and exp for small inputs

For small inputs (𝑥 ≈ 0): log1p(x) = log(1 + x),
expm1(x) = exp(x) - 1, but numerically stable.

x <- 10^-c(11, 13, 15, 17)

cbind(x, log(1+x), log1p(x), exp(x)-1, expm1(x))

#> x log(1+x) log1p(x) exp(x)-1 expm1(x)

#>1e-11 1.000e-11 1.000e-11 1.000e-11 1.000e-11

#>1e-13 9.992e-14 1.000e-13 9.992e-14 1.000e-13

#>1e-15 1.110e-15 1.000e-15 1.110e-15 1.000e-15

#>1e-17 0.000e+00 1.000e-17 0.000e+00 1.000e-17

Reason: internally, to compute non-linear functions,
computers calculate their polynomial approximations; the
latter break down for tiny inputs (recall Session 1).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 58 / 124

Statistical functions in R: xdist

• First letter: replace x with
• d for density
• p for probability distribution
• q for quantile

• Replace dist with
• norm for normal (Gaussian), chisq for 𝜒2

• t for Student, f for Fisher
• binom for binomial (including Bernoulli)
• unif for uniform, exp for exponential
• gamma, beta, geom, hyper, lnorm, weibull, nbinom

dnorm(0) = normal density at 0 (≈0.3989)
pchisq(5.99, df = 2) = ℙ(𝜒22 ≤ 5.99) ≈ 0.95 (PDF)
qf(0.9, df1=2, df2=48) = 90% 𝐹 crit.val. w/ 2&48 DoF

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 59 / 124

Function arguments

Notice that log(10) returns the natural logarithm (base 𝑒),
while log(8, base = 2) = log2 8 = 3.

We spend more time on this later, but most functions in R
are customisable: they can change their default behaviour
to custom user-requested one.

Functions may work with 1 argument, 2 and more
arguments, some of which can be mandatory or optional.

qnorm(0.95) # Default: 0.95-qntl of std. Gaussian

qnorm(0.95, sd = 2) # 0.95-qntl of N(0, var=4)

qchisq(0.9, df = 1) # 0.9-qntl of chi2 w/ 1 DoF

qchisq(0.9) # ERROR: no default dgr of freedom!

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 60 / 124

Credit: MTV (2004).

Pimp my R IDE

Go to Tools→ Global Options.

• General tab: Disable ‘Restore .RData into workspace’,
‘Save workspace’→ ‘Never’

• Appearance tab: Save your eyes by enabling a dark
colour scheme (Ambiance, Chaos, Cobalt, Dracula…)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 61 / 124

Working with IDE

Standard layout:

• Code editor
• Console with an interactive session
• Environment explorer
• Viewers for help, plots, files

Bad: click buttons to load data, set parameters in RStudio
menus

Good: write a script to do all the job without requiring any
supervision

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 62 / 124

Most useful features of RStudio

• Auto-save of modified script files
• Previews of tables and plots
• Auto-suggestion and auto-completion based on the
existing objects: press

• Mass comment/uncomment: ctrl/ + + C

• Run the next line/fragment: Ctrl + Enter

Remember to disable workspace save / load first.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 63 / 124

Code execution in RStudio

• ctrl/ + to run the current line or expression
• If a line is long, or ambiguous, or has unmatched brackets,
it will patiently wait for complete output – press ctrl +

to continue evaluation or Esc to break
• If a fragment of code is running for too long, terminate
the session
• If it does not help, open the task manager (Actvity Monitor
on Mac, top or anything you like on Linux) and kill the
rsession process(es)

• RStudio usually auto-saves, but copy the code to a
different editor before killing the session because RStudio
will restart

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 64 / 124

Auto-saving in RStudio

RStudio auto-saves:

• Unnamed files that have not been ‘Saved as’
• Modified files if the R session crashes

However, upgrading RStudio may ‘kill’ all unsaved unnamed
files. ‘Save as’ everything before RStudio updates!

NB. Keep only one RStudio instance. Auto-saving is not
guaranteed if multiples copies of RStudio are open.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 65 / 124

Best practices for the workflow

• Make sure that your script can run without user input
• Make sure that the extra libraries are listed in the file
• Write a nice informative message indicating any
non-standard system-wise dependencies to be installed
manually (e. g. imagemagick, ffmpeg, Java runtime)

• Possible to check existing
(rownames(installed.packages())) and install new
CRAN packages automatically

• Installing packages without any confirmation is considered
harmful to the user

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 66 / 124

Existing features in the environment

Before one creates anything, the following is always
available in the environment upon start:

• Built-in package functions
• Functions from not-yet-loaded packages can still be
accessed

• Working directory
• Options and graphics parameters
• Data sets (mtcars is useful for quick testing)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 67 / 124

Handy existing objects

• Constant 𝜋: pi
• Built-in character vectors: letters and LETTERS

(a, b, … and A, B, …)
• English month names: month.name, month.abb

.Last.value returns the value of the last top-level
evaluated expression.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 68 / 124

Parameters and platform variables

• .Platform has system information
• Use .Platform$OS.type to detect is the user is using
Windows or not; wait until Session 4 (parallelisation)

• .Machine has numerical characteristics:
.Machine$double.eps = machine 𝜀

• sessionInfo() for running instance summary,
Sys.info() for OS summary, version for for
installation summary, last.warning (obvious)

• par() for graphic parameters, options() for R settings
(both can be re-defined; more on that later)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 69 / 124

Saving results – advice

Good: keep the input data and the script that does the full
job without any interaction and saves the necessary results.

Good: create RData files after computationally costly
operations and load them in further re-runs. Do not read
XLSX with extra packages every time: read XLSX, save in R
native format, use henceforth.

Bad: save the full environment into a file (clutter!).

Bad: create multiple R scripts and go back and forth
running selected chunks between them in the order that
only one person knows.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 70 / 124

Functions for saving and loading

Use save() to store multiple objects of any type (data,
variables, models etc.):
a <- 1; b <- qnorm(0.95)

mod <- lm(mpg ~ hp, data = mtcars)

save(a, b, mod, file = "myName.RData")

NB: save() inputs are object names; the target file name is
a mandatory named argument file="myName.RData".

To exchange files with other users, save data sets as CSV:
write.csv(mtcars, file = "myData.csv")

To load RData data saved with save(), use load():
load("myStuff.RData", verbose = TRUE)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 71 / 124

Example workflow (imaginary)

load("myPreviousStuff.RData", verbose = TRUE)

d1 <- read.csv("mydata.csv")

d2 <- openxlsx::read.xlsx("my.xlsx", sheet = 3)

data.clean <- merge(myStuff, d1, d2, ...)

<Analysis goes here>

f <- formula(...)

mod1 <- estimateModel(f, data = data.clean)

mod2 <- estimateModel(f,

data = data.clean[subsample,])

summmary1 <- summary(mod1, robust = TRUE)

summmary2 <- summary(mod2, robust = TRUE)

<Code for plotting -- wait until Session 5>

save(data.clean, mod1, mod2, summary1, summary2,

file = "myFinal.RData")

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 72 / 124

Any questions on the interface and workflow?

Basic operations and data types in R

Object types

• Dozens of types, impractical to list them all
• User data: everything is a vector
• Logical (boolean), integer, factor, real (numeric), character
• Vectors can be wrapped into arrays and matrices
• Abstraction: lists (including data frames); a list is still a
vector (i. e. has length)

• Custom object types provided by additional packages (e. g.
data.table)

• Expressions, formulæ, relationships for automatic
transformations

• Non-standard inputs: Inf, NA, NaN, NULL

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 73 / 124

Objects are everywhere

• Everything that exists is an object
• Everything that happens is a function call

A variable, a function, a data set etc. are objects.

Objects of various classes support various methods applied
to them. One function may be tailored to process different
objects differently.

Example: plotting is a function call (there in no ‘plot’ object)
to show a representation of the data object(s) somewhere
(we shall discuss it later).

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 74 / 124

Variables

Variable: a container that holds a value that can be created,
modified, or deleted.

Assignment: x <- 1 is better than x = 1.

Variable type need not be declared (dynamic typing).
In C/C++, one would type int x = 1; R does not care if
x <- 1 or x <- "ABC".

Recall that R is case-sensitive:
y1 <- 1; Y1 <- 2

creates two different variables.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 75 / 124

Multiple ways of assigning values

Recommended: x <- 3. Possible: x = 3.

Distinction: x = x+1 makes little sense conceptually, but
x <- x+1 is clearly an overwriting assignment. Also: x=1
works, but 1=x fails.

Assign multiple values at once: a <- b <- 10.

There are two more ways:
• assign("x", 4) is the ‘full’ version of ‘<-’ and supports
extra arguments (e. g. assigning values to a different
environment; useful within nested function)
• See ?assign for more details

• 3 -> x is cursed

NB: spacing matters! x < -3 checks if 𝑥 ≤ 3!
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 76 / 124

Functions

Function: a black box that takes some input(s) and returns
some output (always a single return).

Functions have arguments. Arguments can be unnamed or
named; if their order matches the function definition,
argument names can be skipped.

Arguments can have optional default values:
log(8) = log(8, base = exp(1))

= log(base = exp(1), 8) (see function help).

Functions are so convenient, the entire Session 4 is
dedicated to functions in R. They are the backbone of
efficient workflow.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 77 / 124

Objects with identical names

Functions from packages can share names with user objects.

mean

#> function (x, ...) UseMethod("mean")

#> <environment: namespace:base>

mean <- mean(1:4)

mean # 2.5

mean(10:13) # 11.5

Now, mean refers to the number, while mean() can still be
used to compute averages.

This is safe, but can be confusing for the reader.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 78 / 124

Removing objects and cleaning memory

Any user object can be deleted with the rm() command. It
can be useful if there is the RAM is low.

a <- 10

b <- 1:100

a

#> 10

rm(a, b)

a

#> Error: object 'a' not found

Sometimes, the memory is not freed – use garbage
collection (not needed unless the system hangs):

gc()

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 79 / 124

Vector type

In R, everything can be a vector, and some things, can only
be vectors.

The function c() creates a vector.

The most popular data types created by the user is logical,
numeric, character, and factor.

Vectors can be grown and combined:

a <- c(1, 2)

b <- c(3, 4)

c(8, 9, a, 5, b, b)

#> 8 9 1 2 5 3 4 3 4

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 80 / 124

Vectorised operations

Most operations in R are vectorised.

Those with a C/C++ background, forget loops. Loops can be
useful, but in most cases, the best way to carry out vector
operations in R is without loops.

• Operations between scalars and vectors are
term-to-term

• Operations between vectors of equal length are
term-to-term

1:10 + 100 # Returns 101, 102, ..., 110

c(2, 4, 8) + c(100, 300, 500) # c(102, 304, 508)

More on loops later (Session 3).
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 81 / 124

Creating vectors

Tools: c(), rep() (any type), :, seq() (numeric).

The colon operator has precedence over all other ones!

1:10+100 # Treated as (1:10) + 100

1:(10+100) # Treated as 1:110

If in doubt, extra brackets will not hurt.

(1:4)*100 # 100 200 300 400

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 82 / 124

Repeating elements

The rep() function creates repeated elements. It comes in
various flavours:
x <- c(3, 7)

rep(x, times = 2) # 3 7 3 7

rep(x, 2) # 3 7 3 7

rep(x, times = c(2, 4)) # 3 3 7 7 7 7

rep(x, c(2, 4)) # 3 3 7 7 7 7

rep(x, each = 2) # 3 3 7 7

rep(x, each = 2, times = 3)

#> 3 3 7 7 3 3 7 7 3 3 7 7

rep(rep(x, each = 2), 3) # Same

rep(x, times = 3, each = 2) # Same

NB: Named argument order does not matter!
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 83 / 124

Creating sequences

Arithmetic sequence from 1 to 11 in steps of 3:
seq(1, 11, 3) # 1, 4, 7, 10

seq(from = 1, to = 11, by = 3)

Note that 11 is not included

Useful to generate uniform grids for evaluation:
seq(0, 1, 0.01) # Same as (0:100)/100

Sequence from/to a number with step size and/or length:
seq(1, 2, length.out = 26)

1st argument = 'from', 2nd = 'to'

Same as seq(1, 2, by = 0.04)

seq(to = 6, by = -0.5, length.out = 10)

10.5 10.0 9.5 ...

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 84 / 124

Vector recycling

If two interacting vectors have different lengths, the shorter
one is recycled (repeated until lengths match).

1:4 + c(10, 20, 30)

#> 11 22 33 14

#> Warning message: In 1:4 + c(10, 20, 30) :

#> longer object length is not a multiple

#> of shorter object length

Since 1:4 has length 4, c(10, 20, 30) was recycled to
c(10, 20, 30, 10).

Recycling is the default behaviour; it may save time, but
requires awareness. Usually, a warning is printed. Do not
ignore console warnings! Investigate warnings like errors.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 85 / 124

Application of rep: creating panel data sets

id period wage
1001 2019 10.4
1001 2020 10.3
1001 2021 9.9
1001 2022 9.3
2001 2019 8.1
2001 2020 7.9
2001 2021 8.4
2001 2022 8.4
3001 2019 5.3
3001 2020 4.7
3001 2021 6.0
3001 2022 4.8

ids <- c(1001, 2001, 3001)

ps <- c(2019, 2020,

2021, 2022)

id <- rep(ids, each = 4)

period <- rep(ps, 3)

Alternatively:
ids <- (1:3)*1000 + 1

ps <- 2019:2022

Useful when there are too many
units or periods.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 86 / 124

Combining vectors

Vectors can be thought as sets with well-defined operations
of set intersection, union, and difference.

x <- c(1, 4, 7, 8, 11, 11)

y <- c(3, 4, 12, 14, 15)

intersect(x, y) # 4

union(x, y) # 1 4 7 8 11 3 12 14 15

setdiff(x, y) # 1 7 8 11

setdiff(y, x) # 3 12 14 15

NB: These operations discard duplicated observations. Use
with care. The vector x still contains the duplicated 11.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 87 / 124

Object names

Elements of vectors can have names (labels).

names is an attribute: extra tagged information that is
ignored during calculations, but can be passed as ballast.

x <- 1:4

names(x) <- c("Adam", "Borys", "Cyryl", "Dymitr")

print(x)

#> Adam Borys Cyryl Dymitr

#> 1 2 3 4

attributes(x)

#> $names

#> "Adam" "Borys" "Cyryl" "Dymitr"

attr(x, "names")

#> "Adam" "Borys" "Cyryl" "Dymitr"

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 88 / 124

Deleting names

Attributes in general can be recovered later or used to
enhance readability in the console. One can delete
attrbitues, too.

Drop names by removing the attribute or calling a function
that deletes names:

names(x) <- NULL

Or (same result):

x <- unname(x)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 89 / 124

Object length

Calculate the number of elements in any object:

x <- seq(0, 1, 0.01)

l <- length(x)

l # 101

Vectors can have length 0. What if we compute the set
difference between a small and a large vector?

a <- 1:3

b <- 1:4

d <- setdiff(a, b)

d

#> integer(0)

length(d) # 0

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 90 / 124

Chaining operations

Multiple computations can be done in the same line:

l <- length(seq(0, 1, 0.01))

is the same as

x <- seq(0, 1, 0.01)

l <- length(x)

But keep the number of objects manageable

Whenever a ‘<-’ assignment is made, it returns the assigned
object. New objects can be created anywhere:

x <- seq(a <- 0, b <- 1, d <- 0.01)

print(c(a, b, d))

#> 0.00 1.00 0.01 # Now a, b, and d exist!

However, this makes the code slightly less readable.
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 91 / 124

Matrices

• Matrices are vectors stacked together (column by
column)

• Matrices have two dimensions and have respective
functions to visualise them

• Can be created by column (default) or by row

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 92 / 124

Matrix from a vector

Recall the discussion that any array can be wrapped in a 1D
vector. The opposite is possible:

a <- 1:12

m <- matrix(a, nrow = 3, ncol = 4)

m

#> 1 4 7 10

#> 2 5 8 11

#> 3 6 9 12

Since the vector length is known, the second dimension can
be omitted:

matrix(a, nrow = 3) # Same

matrix(a, ncol = 4) # Same

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 93 / 124

Matrix by row and transpose

Matrices can be written like text (left to right, then top to
bottom). Use the byrow argument:

m <- matrix(1:6, nrow = 2, byrow = TRUE)

m

#> 1 2 3

#> 4 5 6

Transpose a matrix with the t() function:

t(m)

#> 1 4

#> 2 5

#> 3 6

This is why ‘c’ and ‘t’ are bad object names (see Slide 78).
Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 94 / 124

Care with requested matrix dimensions

Since R recycles shorter vectors until all vector lengths
match, make sure that the length of the matrix vector is
divisible by the requested number of rows and columns.

matrix(1:20, ncol = 4) # Works normally

matrix(1:20, ncol = 6) # 20 is not divisible by 6

#> [,1] [,2] [,3] [,4] [,5] [,6]

#> [1,] 1 5 9 13 17 1

#> [2,] 2 6 10 14 18 2

#> [3,] 3 7 11 15 19 3

#> [4,] 4 8 12 16 20 4

#> Warning message: In base::matrix(...) : data

#> length [20] is not a sub-multiple or multiple

#> of the number of columns [6]

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 95 / 124

Getting matrix dimensions

Get the number or rows and columns of a matrix:

a <- 1:12

m <- matrix(a, nrow = 3, byrow = TRUE)

nrow(m) # 3

ncol(m) # 4

dim(m) # c(3, 4): rows, then columns

However, the length of a matrix is the number of elements
in the vector that makes it up. Recover the original vector:

length(m) # 12 -- do not confuse with nrow!

v <- as.vector(m)

v

#> 1 5 9 2 6 10 3 7 11 4 8 12

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 96 / 124

Matrix ≠ vector

Although matrices are wrapped long vectors, matrices have
non-empty dimensions, whilst vectors are dimensionless
(not a 𝑘 × 1 matrix; no such default).

v <- 1:3

m <- matrix(v, ncol = 1)

print(v)

print(m) # Formatting difference

dim(v) # NULL

dim(m) # c(3, 1)

t(v) # Can still be transposed

t(t(v)) # Becomes a 3x1 matrix; esoteric

Some functions really expect 𝑘 × 1 matrix inputs – read the
function documentation, convert if necessary.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 97 / 124

One function to measure the length

Luckily, there are capitalised versions, NROW() and NCOL(),
that would return the correct dimension for both matrices
and vectors.

v <- 1:3

m <- matrix(1:6, ncol = 3, nrow = 2)

c(NROW(v), NCOL(v)) # 3 rows, 1 column

c(NROW(m), NCOL(m)) # 2 rows, 3 columns

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 98 / 124

Matrix dimension names

Matrices can have row names and column names.

a <- 1:12

m <- matrix(a, nrow = 3, byrow = TRUE)

rownames(m) <- c("Andor", "Botond", "Csaba")

colnames(m) <- c("Jan", "Apr", "Jul", "Oct")

m

#> Jan Apr Jul Oct

#> Andor 1 2 3 4

#> Botond 5 6 7 8

#> Csaba 9 10 11 12

NB: names() ≠ rownames()! Check this:

names(m)

#> NULL

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 99 / 124

Joining (connecting) matrices

• Matrices with equal # of rows (𝑛 × 𝑎, 𝑛 × 𝑏) can be bound
horizontally (by column) into a 𝑛 × (𝑎 + 𝑏) matrix

• Matrices with equal # of columns (𝑘 × 𝑚, 𝑙 × 𝑚) can be
bound vertically (by column) into a (𝑘 + 𝑙) × 𝑚 matrix

The cbind() and rbind() functions do exactly this:

a1 <- matrix(1:12, nrow = 3, ncol = 4)

a2 <- matrix(1:8+100, nrow = 2, ncol = 4)

a3 <- matrix(1:6+200, nrow = 3, ncol = 2)

rbind(a1, a2) # Result: 5x4

cbind(a1, a3) # Result: 3x6

cbind(a1, a2)

#> Error: number of rows of matrices must match

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 100 / 124

Binding with names

A vector can be connected into a matrix without any
conversion as long as their lengths are equal and they
match nrow() of the matrix.

The arguments or rbind() and cbind() can be named –
the supplied names become row / column names.

a <- matrix(1:12, nrow = 3, ncol = 4)

b <- cbind(1:3, 4:6, 7:9, 10:12) # Same

cbind(a, 101:103)

cbind(a, Extra = 101:103)

Some rows / columns may remain unnamed – their names
are set to "" (empty string) – more details in Session 3.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 101 / 124

A couple of matrix functions

If m is a matrix, use:

• rowSums(m), colSums(m) to compute the sum in rows /
columns, respectively

• rowMeans(m), colMeans(m) to compute the means in
rows / columns

We shall learn how to compute arbitrary quantities from a
matrix (e. g. standard deviation by column, % of missing
variables per observation) in Session 4.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 102 / 124

Any questions on vectors, matrices, and dimension names?

Getting help

Sources of help

• Every user-level function is documented
• Type ?myFunctionName to open the help page
• The documentation quality depends on the function author

• Type just function in the console (without any
brackets) to read the source code of the function

• Google search and StackExchange is invaluable
• Many tutorials online
• Various resources offer different solutions with different
packages

• If one does not work, try another; compare and benchmark

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 103 / 124

Documentation

• Base R:
https://cran.r-project.org/manuals.html

• Every package: a CRAN page with source code and
documentation (at least rudimentary)
• Every function has an offline help page
• All default argument values, definitions, description,
example

• Some packages: vignettes highlighting the most popular
features and giving a deeper overview
• Offline vignettes: vignette(all = TRUE)

• R Journal, Journal of Statistical Software…

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 104 / 124

https://cran.r-project.org/manuals.html

Getting function help

To get help about the log() function, type in the console:

?log # Help on logarithms

help("log") # Same

Some topics are dedicated to groups of functions:

?Distributions # Help on built-in distributions

?InternalMethods # Most basic low-level commands

Keywords (if, else, while, function, for, in, break, …)
and non-text characters must be put in backticks:

?for # Does not work! Press Esc to cancel

?`for` # Works -- help on loops

?`:` # Help on the colon for sequences

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 105 / 124

Getting topic help

To search for a topic by keywords, use two question marks.

??quantile # Evrythg that mentions 'quantile'

?quantile # Help on the quantile() function

Use backticks or help.search() to search phrases with
spaces:

??`maximum likelihood`

help.search("logistic regression")

Look up all package functions:

??stats

??survival

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 106 / 124

Getting package vignettes

Some packages are accompanied by beautiful small
manuals, or vignettes.

install.packages("glmnet")

vignette(all = TRUE) # Show all vignettes

vignette("glmnet") # Open vignette

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 107 / 124

Using digital assistants

• Chat bots and neural networks can
hallucinate a reasonable answer or
a viable first step

• The accuracy of digital assistants
depends on the task complexity

• Always perform rigorous tests of
the tool-generated solutions
before incorporating them
• Try changing the inputs

Signor Chiatti Geppetto
(ChatGPT) at work

‘A computer can never be held accountable, therefore,
a computer must never make amanagement decision.’
(1979, IBM)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 108 / 124

Can ChatGPT help with R?

• I have a data set mtcars
• I want to estimate the linear relationship between mpg
and regressors (cyl, disp, hp, gear, carb)

• Write a function to estimate this linear regression in R
Sure, I can help you with that! You can use the

built-in `lm()` function in R to perform <...>

Function to estimate linear regression
perform_linear_regression <- function() {

Load the dataset
data("mtcars")
Define the formula for the linear regression
formula <- mpg ~ cyl + disp + hp + gear + carb
Fit the linear regression model
regression_model <- lm(formula, data = mtcars)
Return the regression model
return(regression_model)

}
Call the function to perform linear regression
regression_result <- perform_linear_regression()
Print the summary of the regression model
summary(regression_result)

• Correct result
• Too wordy
• Many redundancies
• Wrong standard
errors

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 109 / 124

Stress-testing ChatGPT: robust SE

‘How do I compute robust standard errors for the
estimates?’
To compute robust standard errors for the parameter

estimates in R, you can use the sandwich package,

which provides <...>

library(sandwich)

perform_robust_regression <- function() {
<..same things as earlier..>

robust_se <- sqrt(diag(vcovHC(regression_model)))

result <- data.frame(Coefficients =

coef(regression_model), Robust_SE = robust_se)↪
robust_regression_result <-

perform_robust_regression()↪
return(result)

}

robust_regression_result <-

perform_robust_regression()↪
print(robust_regression_result)

• Correct result
• Right package
• Adjusts the display
style

• Human-readable
explanation

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 110 / 124

Stress-testing ChatGPT: bootstrapping

‘How can I bootstrap the coefficients of this model to get
bootstrap confidence intervals?’
Bootstrapping is a resampling technique that can be

used to estimate <...>

Load the required packages

library(sandwich)

library(boot)

perform_robust_regression <- function() {
<..same things as earlier..>

}

perform_bootstrap <- function(data, num_bootstraps =

1000) {↪
boot_results <- boot(data,

perform_robust_regression, R = num_bootstraps)↪
boot.ci(boot_results, type = "bca")

}

data("mtcars")
Call the function to perform bootstrap

bootstrap_result <- perform_bootstrap(mtcars)

Error in statistic(data,

original, ...) : unused
argument (original)

↪
↪

• Produces a
non-trivial error

• There is no ‘original’
argument in the
code

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 111 / 124

Stress-testing ChatGPT: fixing the error

‘This code does not work. I am getting this: "Error in

statistic(data, original, ...) : unused

argument (original)". Fix the error.’
I apologize for the confusion. It seems I made a

mistake in the code. Here's the corrected version

that should work:

perform_robust_regression <- function(data, indices)

{↪
subset_data <- data[indices,]
<...>

}

bootstrap_result <- perform_bootstrap(mtcars)

Error in t.star[r,] <- res[[r]] :
incorrect number of subscripts on matrix

• Still does not work
• Still produces a
non-trivial error

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 112 / 124

Stress-testing ChatGPT: second error

‘This code does not work. I am getting this error: <…>’
I apologize for the confusion. It seems there's still

an issue in the code. The "incorrect number of

subscripts on matrix" error is usually caused by

incorrect indexing when saving the bootstrap results.

perform_robust_regression <- function(data, indices)

{↪
subset_data <- data[indices,]
formula <- mpg ~ cyl + disp + hp + gear + carb

regression_model <- lm(formula, data = subset_data)

robust_se <- sqrt(diag(vcovHC(regression_model)))

result <- coef(regression_model)

return(result)

}

perform_bootstrap <- function(data, num_bootstraps =

1000) {↪
<...>

}

bootstrap_result <- perform_bootstrap(mtcars)

• No error
• Very slow (3.5 s)
• Computes robust
SEs and never uses
them

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 113 / 124

Speeding ChatGPT code up

‘This is too slow. Keep the bootstrap, but remove the code
related to robust standard errors.’
Certainly, <...> In this version of the code, I

removed the calculation of robust standard errors

<...>

Load the required package

library(boot)
Function to estimate linear regression coefficients

perform_regression <- function(data, indices) {

subset_data <- data[indices,]
formula <- mpg ~ cyl + disp + hp + gear + carb

regression_model <- lm(formula, data = subset_data)

result <- coef(regression_model)

return(result)

}

perform_bootstrap <- function(data, num_bootstraps =

1000) {↪
<..same as before..>

}
<..same as before..>

print(bootstrap_result)

• No error
• Much faster (1.5 s)
• However, it displays
the confidence
interval only for the
intercept

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 114 / 124

Questioning ChatGPT competence

‘For which coefficient is this confidence interval?’
I apologize <...> The code <...> calculates the

bootstrap confidence intervals for the first

coefficient <...> which corresponds to the intercept.

(Correct. But it gave incorrect code that returned NULL.)

‘Why am I getting NULL? I want confidence intervals for the
5 variables in the model.’
I apologize <...> Here's the corrected version <...>

(The new code still returns NULL.)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 115 / 124

Attempting to lead the blind

‘No, I am still getting NULL. Maybe you could use `sapply'
and call the `boot.ci' function with every index
corresponding to a position in the coefficient vector?’
In this version of the code, we use sapply() to

iterate through the indices corresponding to each

coefficient <...>

Error in object$coefficients : $ operator is invalid

for atomic vectors↪

‘I am getting <error text>.’
I apologize for the continued issues <...>

(Still returns non-functioning code.)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 116 / 124

Continuing to lead the blind

‘Okay, if this is not working, I need simple R code that uses
LASSO to pick 3 out of 5 of these variables for the same
model.’
Certainly! You can use the glmnet package <...>

(Returns working code, but uses a weird and very restrictive parameter
grid and selects 6 variables instead of 3.)

‘There are 6 variables in the output. I need only 3. Modify
the code that chooses only the 3 most relevant predictors.’

(Returns the code with 3 variables largest in absolute value.)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 117 / 124

Giving up leading the blind

‘Modify the code so that it returns the variables that first
appear on the LASSO selection path, not the ones largest in
absolute value.’

(Goes back to the initial version.)

‘Wrong. It selects 6 variables. In addition, the custom
lambda sequence is weird. Use the default one.’

(Returns a completely wrong result.)

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 118 / 124

What we expected – LM with robust SE

library(sandwich)

library(lmtest)

f <- mpg ~ cyl + disp + hp + gear + carb

mod <- lm(f, data = mtcars)

print(coeftest(mod, vcov. = vcovHC))

#> t test of coefficients:

#> Estimate SE t p

#> (Intercept) 21.1076 8.9124 2.3684 0.02558 *

#> cyl -0.2571 0.8079 -0.3183 0.75283

#> disp -0.0186 0.0090 -2.0696 0.04856 *

#> hp -0.0063 0.0208 -0.3034 0.76399

#> gear 2.6974 1.6915 1.5947 0.12286

#> carb -1.4801 0.7158 -2.0676 0.04876 *

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 119 / 124

What we expected – bootstrap CIs

library(boot)

getCoef <- function(d, i) coef(lm(f, data = d[i,]))

set.seed(1)

b <- boot(mtcars, getCoef, R = 999)

bci <- sapply(1:6, function(i) boot.ci(b, type =

"bca", index = i)$bca[4:5])↪

colnames(bci) <- names(coef(mod))

rownames(bci) <- c("Lower", "Upper")

print(bci, 3)

#> (Intrcpt) cyl disp hp gear carb

#> Lower 6.0 -1.91 -0.03822 -0.0491 0.265 -2.785

#> Upper 37.8 1.18 0.00164 0.0329 5.812 -0.122

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 120 / 124

What we expected – variable selection

library(glmnet) # 3 lines for estimation

f <- mpg ~ cyl + disp + hp + gear + carb

m <- model.frame(f, data = mtcars)

mod <- glmnet(x = m[, -1], y = m[, 1])

And 4 lines for extracting 3 variables

b <- as.matrix(coef(mod))[-1,]

gt3 <- apply(b, 2, function(x) sum(x!=0) >= 3)

bs <- b[, which(gt3)[1]]

rownames(b)[bs != 0]

#> "cyl" "disp" "hp"

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 121 / 124

Do not shoehorn yourself

A: I have created an example for Session 4. It shows how a
solution that takes 43 s to run can be transformed into a
more memory-efficient one that takes less 1 s.

B: Yeah? I have been using R since 2014, and I do everything
with data.table.

A: I do not see any obvious solution. Please teach me.

(45 minutes later after numerous errors in 2 code lines.)

B: Okay, there still should be some way to invoke it with
data.table – let’s ask ChatGPT.

Result: A and B are none the wiser.

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 122 / 124

So where do I learn?

ChatGPT 3.5 cannot go beyond the simplest examples.
• Incorrect answers to research questions, even after
guiding rectifications (maybe v4 is better?)
• However, some examples would take hours for new users
without any assistance – use it for hints, not full solutions

• If the machine is learning, the user is not

Reliable sources:
• Examples from the built-in help (at the bottom)
• Blog posts with hands-on examples written by
experienced R users (Rob J. Hyndman, Achim Zeileis,
Peter Dalgaard, Sebastian Krantz, Bruno Rodrigues etc.)

• Researchers’ pages – many publish online appendices
• Books with examples from the field

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 123 / 124

Further reading

• Variable naming style in R
• Test: big-data tool or Pokémon name?
• International Space Station switches to Linux in 2013

Empirical research in Econ+Fin+Mgmt using R. © Andreï V. Kostyrka, Université du Luxembourg, 2023 124 / 124

https://stackoverflow.com/questions/1944910/what-is-your-preferred-style-for-naming-variables-in-r
https://pixelastic.github.io/pokemonorbigdata/
https://www.extremetech.com/extreme/155392-international-space-station-switches-from-windows-to-linux-for-improved-reliability

Thank you for your attention!

	Best practices in programming
	R and its ecosystem
	Working without and with interface
	Basic operations and data types in R
	Getting help

