Empirical research |SING R:

Essentials, real examples, and troubleshooting

Day 4: Functions, a.k.a. the pith of R

Andrei V. KOSTYRKA I l
27" of September 2023 m

UNIVERSITE DU
LUXEMBOURG

Quick recap

We learned:

« How to check conditions and run loops
« How to make changes to data sets
« How to handle data of different types

Today, we harness the full power of functional abstraction
and their vectorised application.

1/134

Presentation structure

1. How to write functions

2. Methods, namespaces, calls & ellipses

3. Debugging

4. Vectorisation and parallel computing

5. Speeding up, benchmarking, profiling

2/134

How to write functions

Functions

The real power of R! Direct productivity gains if you have a
piece of code that you use at least twice.

« Very easy to create flexible
functions; zero costs

« Can be generalised, wrapped,
nested to create super-
convenient user-friendly
wrappers

« Declare once, use everywhere;
publish, upload to a repository,
or package them

Creating functions

- Formalise a set of instructions applied to objects given
as the input

+ Mandatory and optional (with default values) arguments
« May have multi-object return via a list

« Many tutorials on good practices

4134

Pure functions

Pure function: a function that will always return the same
output for the same input, does not depend on the
environment, and does not modify the environment.

In R, functions may rely on global objects, but this is bad
practice:

- Non-pure functions are more prone to errors

« Non-pure functions are harder to debug

The crucial function of your project should rely only on
inputs and make no assumptions about the existence of
objects in other environments.

5/134

How to imagine functions

Function

Combined
output

6/134

Function arguments

Functions can have mandatory and optional arguments.
- Mandatory: must be provided, otherwise the function
won't run

- Optional: may be omitted because some default values
are already pre-programmed

Check ?funcName and see the help: quite often, there are
agreed-upon defaults that may be unsatisfactory for certain
applications.

7/ 134

Always read function help

R: Arithmetic Mean - | Findlin Topic

mean {base} R Documentation

Arithmetic Mean

Description
Generic function for the (timmed) arithmetic mean.

Usage
LEEL TS

Defa

mean(x, trim =
Arguments

An R object. Currently there are metheds for numeric/logical vectors and date, datetime and time interval objects. Complex
vectors are allowed for trim = @, only.

the fraction (0 to 0.5) of cbservations to be timmed from each end of x before the mean is computed. Values of trim outside that

£IiM range are taken as the nearest endpoint.

na.rm a logical evaluating to TRUE or FALSE indicating whether NA values should be stripped before the computation proceeds.

further arguments passed to or from other methods.

Functions of a single argument

exp () is a function that takes any numeric argument (x)
and returns e*:

© L]
exp(1) # 2.71828. .. g -
exp(0) # 1 o “_,,.muﬂ“"’#f
x <- seq(-2, 2, 0.1) © T 1 1
plot(x, exp(x)) 2 -1 0 1 2

X
exp()

#> Error in exp() :
#> 0 arguments passed to 'exp' which requires 1

9 /134

Function of multiple arguments

mean() is a function that takes any argument (x) of length
n = length(x) and returns % Zlf’=1 Xx; — but it has two extra
arguments:

« Logical na.rm determines if NA are omitted or
propagated

« Numeric trim determines the fraction of observations
to omit from both ends (i.e. trim = 0.5 yields the
median; trim = 0.25 the inter-quartile mean)

10/ 134

Argument names

Every function argument has a name.

mean(x = c(1:9, 100)) # 14.5
mean(c(1:9, 100)) # Same

Named arguments can go in any order:

mean(x = c(1:9, 100), trim = 0.1) # 5.5
mean(trim = 0.1, c(1:9, 100)) # Same

Check the help page and the definition:
mean(x, trim = 0, na.rm = FALSE)

Hence, mean(c(1:9, 100, NA), 0.1, TRUE) works but
mean(c(1:9, 100, NA), TRUE, 0.1) fails.
1/134

Who needs user functions

Many functions used in economic analysis take other
functions as inputs:

- Optimisers / solvers: objective function to minimise +
some information about the search range + solver
parameters

« Wrappers to pre-transform data / do sanity checks
- Random number generators for Bayesian / Monte-Carlo
|/ simulation / stochastic methods

Plots from complex returns are best produced with
functions.

12/ 134

Creating a function

Create a function by assigning the following structure to the
name that you want:

myFunName <- function(argl, arg2) {
Necessary operations
carried out on the input arguments
(and maybe global objects -- but
this is bad practice: non-pure function)
return(output)

13 /134

Default return value

If the return value is not stated, the last evaluated
expression is returned:

multByTwo <- function(x) {
out <- x%2
return(out)

}

is the same as

multByTwo <- function(x) x*2

14 /134

Example: function as an input

Solve the equation logx = x —3/2
by finding the roots of
f(x) = log(x) - (x - 3/2) °
(i.e. find x*: f(x*) = 0).
Suppose that we are interested in
the greater root (1 < x* < 3). !

f <- function(x) log(x) - x + 1.5
uniroot(f, interval = c(1, 3), tol = 1e-8)
#> $root

#> 2.357677

#> ...

109(2.357677) + 1.5 # 2.357677

15/ 134

Shorthand and anonymous functions

\ (x) is the same as function(x), which can save space
and - in some cases — improve readability.

f <- \(x) log(x) - x + 1.5
However, if uniroot () require a function as an input, we

can supply it on the fly without ever saving it as an
environment object - thus creating an anonymous function:

uniroot(\(x) log(x) - x + 1.5,
interval = c(1, 3), tol = 1e-8)

16 /134

Returning multiple objects

Return is always a single object. Multi-object returns are
not supported. In case more than one result has to be
saved, combine everything into a list / vector / matrix etc.:

f1 <- function(x) return(x”"2, x"3)
f1(2)
#> Error: multi-argument returns are not permitted

f2 <- function(x) return(list(square = x"2,
cube = x"3))

f2(2)

#> $square

#> 4

#> $cube

#> 8

17/ 134

Avoiding wrong returns

If an operation is carried out on a subset, only a subset will
be returned - but not the full object! Suppose that we want
to replace the 3™ element of a vector with NA.
makeThirdNA <- function(x) x[3] <- NA

a <- makeThirdNA(1:5)

a # 5, but notl1 2 NAA4S5S

Last evaluated expression: x[3] after “<-" —i.e. simply NA.

makeThirdNAGood <- function(x) {
x[3] <- NA
X # This should be returned!

}
makeThirdNA(1:5) # 1 2 NA 4 5

Best practice: explicitly return (or call) the full object!
18 /134

Stopping evaluation upon return

Once a return() is hit during evaluation, it stops and
yields the value.

f <- function(x) {
return("to sender")
return("of the Jedi")
print("You should not see this text")
return(0)
I3

fQO

#> "to sender"

19/134

Returning early on condition

Function may have conditional returns: if some condition is
satisfied, return A; otherwise, continue and return B.

myPrint <- function(x) {
if (mean(x) < 0) {
cat("Avg. x < 0; returning the mean\n")
return(mean(x))
}
Sys.sleep(2) # Some long operation
cat("Returning the square root of x[x>0]\n")
return(sqgrt(x[x > 0]))
}
myPrint(-9:2) # Fast
myPrint(1:3) # Slow

20/ 134

Wrap routines to lay the groundwork

prepCanvas <- function() {
plot(NULL, NULL, xlim = c(0, 13), ylim = c(8, 10), bty = "n",
xlab = "Hours worked", ylab = "Income", main = "Wage equation")

abline(v = (v4 <- seq(0, 12, 4)), col = "#B0O0OBOAA", 1ty = 2)
abline(v = setdiff(0:13, v4), col = "#00000088", 1ty = 3)
abline(h = ¢(8, 5, 10), col = "#00000088", 1ty = 3)
}
Wage equation Wage equation Wage equation
2 g Q i 2 g
GE’ © E © L) 3 ®e E ©
g g . g
£ < £ < : £ <
o i : ; ; o i : ; ; °
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Hours worked Hours worked Hours worked
prepCanvas() prepCanvas() prepCanvas()
points(1:11, abline(a = -1, b = 0.5,
mtcars$mpg[1:111/3, col = 2, lwd = 3)
pch = 16)

Functions without arguments

Functions can have zero arguments:

f <- function(x) print("Hello")
O

Functions with all default values of optional arguments can
be called with no arguments:

g <- function(str = "dear user")
print(paste®@("Hello, ", str, "!"))

g("gorgeous") # Hello, gorgeous!

g() # Hello, dear user!

22 /134

Non-pure functions

Functions may rely on global objects:

d <- mtcars # User object
f <- function(v) mean(d[, vIl)
f("mpg") # Works

In some circumstances, it may cause issues, but in general,
this is acceptable.

23 /134

Not using arguments

It is completely safe to define arguments (even mandatory
ones without default values!) and never use them:

f <- function(x, y) print("Oh no, anyway...")

0
f(1, "whatever")

24 [134

Unforeseen named arguments

Unless special measures are taken (like the ellipsis),
functions will not ignore named arguments absent in their
definition but provided by the user.

myPrint <- function(x) print(x[1])

myPrint(11:20) # 11
myPrint(x = 11:20) # 11

myPrint(y = 11:20)
#> Error: wunused argument (y = 11:20)

25/ 134

Errors and warnings

Instead of returning output, functions may stop with an
error message, halting script execution.

plot(1:2, 1:3)

#> Error in xy.coords: 'x' and 'y' lengths differ

On warnings, execution continues, the output is returned:

1:2 + 1:3 # 2 4 4
#> Warning message: longer object length is not a
#> multiple of shorter object length

Silent errors / side effects are dangerous: what if the user
never knew that a non-trivial result was returned?

1:2 + 1:4 # 2 4 4 6 -- recycled 1:2, no warning!

Invocation: stop("Message") and warning("Message").
26 [134

Documenting functions

Document your functions: you will forget the details soon.

Describe the general logic, put URLs or references to
formulae or pages in papers.

Pricing-error matrix: multiply M and Y element-wise and sum over
the cash flows of a given PE investment. Then subtract the prices

No need to do extra subsetting operations if there are no weights

If a function relies on generated formulae / complex
expressions / calibration constants, show the source:

Computes the copula cross-derivative d/du d/dv amh(u, v)

A1l expressions generated in Wolfram Mathematica 11

amh = uxv/(1 - kx(1-u)*(1-v));

FullSimplify[D[amh, v, v]] // InputForm

amh <- -(1+k*(-2+u+kx(u-1)*(v-1)+v+uxv)) / (-1+k*(u-1)*(v-1))"3

27 [134

Input checking

Enforcing input types / properties is better than writing
wishful comments. Quick checks prevent many errors.

if (length(x) !'= length(y))
stop("Lengths of x and y differ.")

Be nice, produce helpful information (where to look):

id <- c(1, 1, 1, 2, 2, NA, 3, NA, 3)
p <- l!is.finite(did)
s <- sum(p)

if (s > 0) {
pos <- paste@(which(p), collapse = ", ")
stop(paste0("Matching impossible: ",
s, " IDs not finite; check rows ", pos))
}

#> Error: Matching impossible: 2 IDs not finite; check rows 6, 8

28 [134

Warning or errors on type mismatch?

Throwing an error is safer (‘fail fast’ principle!), but an
informative warning for an exception is good, too:

mean("Life")
#> Warning: argument is not numeric or logical

If a warning is too frequent or fussy (appears in cases where
it can be safely ignored), the user may forget to check the
warning (most users don't!).

Check the last warnings with warnings().

f <- function(x) sqrt(x) + 1

fl4a:(-4))

warnings()

#> Warning message: In sqrt(x) : NaNs produced

29 [134

Suppressing warnings

Recall Session 2: do not ignore console warnings;
investigate them as if they were errors.

But what if a warning is silly, obnoxious, or ignorable in a
given task, and we want to suppress specific warnings (not
all, but some that we deem ‘unimportant’)?

Fussy function:

f <- function(n = 10) for (i in 1:n) warning(i)
f() # Prints 10 warnings by default

Suppress the warnings at your own risk:
suppressWarnings(f(100)) # Quiet
30/134

Example: loading multiple packages at once

library() can only take 1 argument. Can we automate
library("this"), library("that"), ..?

loadPkgs <- function(pkgs, # Char vector of pkg names
install.missing = FALSE) {
for (x in pkgs) {
if (x %in% rownames(installed.packages())) {
library(x, character.only = TRUE)
} else {
if (install.missing) install.packages(x) else
warning(paste@("Install package ", x, " manually!"))
Fr
}

loadPkgs(c("boot", "BMS"))
loadPkgs(c("boot", "BMS"), install.missing = TRUE)

Default behaviour: warning (non-invasive).
31/ 134

Initialisation of arguments with NULL

NULL is useful where the absence of a default value
requires a special action. Example: assign decreasing seat
numbers to numbered attendees and use names if they are
supplied (relying on length(NULL) being 0):
cards <- function(n, names = NULL) {

x <- if (length(names) == n) names else paste("Guest", 1:n)

y <- n:1
return(pasted(x, " [seat ", y, "1"))

cards(4) # "Guest 1 [seat 4]" "Guest 2 [seat 3]"

"Guest 3 [seat 2]" "Guest 4 [seat 1]"

cards(4, names = c("Alex", "Bella", "Camille", "Dana"))

"Alex [seat 4]" "Bella [seat 3]" "Camille [seat 2]" "Dana [seat 1]"

Q: Why is length(names) == n safer than

is.null(names)? A: to safeguard against bad length. But!

if (length(names) !'= n) warning(...) is even better.
32/134

Any questions on functions and arguments?

Methods, namespaces, calls & ellipses

Checking function definition

Type the function name in the console to see what is going
under its hood.

Example: linear regression with robust standard errors.

library(lmtest) # For coeftest
library(sandwich) # For vcovHC

mod <- m(mpg ~ cyl + hp, data = mtcars)
print(coeftest(mod, vcov. = vcovHC))

Run the next line (just one word - no brackets etc.):

vcovHC
#> function (x, ...) UseMethod("vcovHC")

But what does it mean?
33/134

Methods inR

Recall that everything is an object.

- Objects can be of multiple classes - well-defined types
(matrix, linear model, hypothesis test arbitrary list)

« Custom classes can be created

« The same function can be an umbrella term for multiple
sub-functions that operate on various classes

+ R packages aimed at user convenience provide new
methods for their custom classes

34 /134

Know thy methods

plot() is a method:
- By default, it plots scattered point pairs (x, y)
plot(1:20, 1:20, pch = 1:20)
- For a time-series object (class(x) == "ts"), lines
plot(ts(mtcars$mpg, start=c(1996,1), freq=4))

« For a kernel density estimator, line plot + bandwidth
plot(density(mtcars$mpg))

« For a linear model, an interactive diagnostic plot

(requiring the user to hit | <))
plot(lm(mpg ~ cyl + hp, data = mtcars))

See methods(plot) for the full collection!
35/ 134

Disassembling the vcovHC() method

Type vcovHC.default (no brackets) in the console:

vcovHC.default
function (x, type = ...)
{
type <- match.arg(type)

rval <- meatHC(x, type = type, omega = omega)

if (sandwich)
rval <- sandwich(x, meat. = rval, ...)
return(rval)

hy

<environment: namespace:sandwich>

Do the same for meatHC.

36/ 134

Hidden functions

When going into the rabbit hole of debugging and following
the functions chains, one might encounter a function or
method that is not callable:

m <- estfun.lm(obj) # Deep in meatHC

estfun.lm

#> Error: 'estfun.lm' is not an exported
#> object from 'namespace:sandwich'

When functions are not exported into a package namespace,
they can still be invoked via the triple colon:
sandwich:::estfun.lm # Works

Using ::: is extremely helpful for debugging errors cause
by functions in others’ packages.

37/ 134

Unveiling built-in methods

Whenever plot() is called, R checks the object class and
reaches for the appropriate function.

Even the built-in methods can be hidden. Look them up in
packages base, utils, stats, graphics etc. by using :::
(luckily, RStudio auto-suggests the functions).
stats:::plot.density

stats:::plot.lm
graphics:::barplot

Methods are usually documented: check ?plot.lm and
’plot.density to see the difference. Note that these
methods take completely different arguments, yet the
function call - plot() - is the same.

38 /134

Namespace precaution with methods

Packages provide functions, classes, and methods to apply
to the custom classes. Namespace clashes and masking
may occur with methods, too.

lag # function (x, ...) UseMethod("lag")
<environment: namespace:stats>
lag(1:3)

#> 12 3

library(dplyr)

#> The following objects are masked from ‘package:stats’:
#> filter, lag

lag(1:3)
#> 01 2

Solution: explicitly call functions that are masked by other
packages: stats::lagor dplyr::lag.
39/134

Argument support in methods

Some packages support extra arguments for the methods of
the same name. summary.1lm() cannot compute robust SEs
for a linear model, but AER: : :summary.ivreg() supports
custom robust estimators:

summary.lm
#> function (object, correlation = FALSE, ...)
AER:::summary.ivreg
#> function (object, vcov. = NULL,
df = NULL, diagnostics = FALSE, ...)

modIV <- ivreg(mpg ~ hp + cyl | # Very silly 2SLS
gsec + gear + cyl, data = mtcars)

class(modIV) # "ivreg"

summary (modIV)

summary (modIV, vcov. = vcovHC)

40/ 134

Extracting coefficients

Different functions may return similar summaries as
different classes. Cf. stats: :summary.1m() and
Imtest: :coeftest().

library(lmtest); library(sandwich)

mod <- lm(mpg ~ cyl + hp, data = mtcars)
sl <- summary(mod)

s2 <- coeftest(mod, vcov. = vcovHC)

sl; s2

« class(s2)="coeftest", but is.matrix(s2)=TRUE
(see str(s2)); the robust SEs are s2[, 2]

« class(s1)="1ist" with elements coefficients,
r.squared, fstatistic —they are non-robust and are
thus useless at best (dangerous at worst)

41/134

Ellipsis

In C, C++, and R, ... stands for ‘variable number of
parameters to a function’.

max () returns the maximum scalar value from all of its
inputs, which can be an arbitrary number of vectors:

max (1:100) # 100
max(1:10, mtcars$mpg, 100) # 100

See ?max - it is defined as max(..., na.rm = FALSE).

42 [134

Passing ellipses to nested functions

If a function extends existing functions, ... is a way to
catch all the inputs and pass them further:

myMean <- function(x, ...) {

In this example, ... will be passed to mean()
print("Here are the original values")
print(x)
mean(x, ...)
I
myMean(c(1:9, 100)) # 14.5

myMean(c(1:9, 100), trim = 0.1) # 5.5

Notice how myMean() accepts the trim argument despite it
not appearing in the definition.

43 [134

Ellipses capture bad inputs

Recall the example where ¥ <- function(x) x[10]
would fail upon f(y = 11:20).

It is possible to sink all erroneous inputs into the ellipsis:

h <- function(x = NA, ...) x[10]
h(11:20) # 20
h(x = 11:20) # 20
h(y = 11:20) # NA, but no error!

44 [134

Function call

Instead of writing long lists of inputs for all functions, one
can assemble them into a single list of named arguments
and do a function call.

f <- function(x, y, z) max(x, y, z)
f(x = 1:3, y = mtcars$mpg, z = 50)

is the same as

a <- list(x = 1:3, y = mtcars$mpg, z = 50)
do.call(what = f, args = a)

45 [134

Use case for function calls

Multiple plots with similar formatting can be produced with
identical arguments - the naive approach is cumbersome:

plot(x = mtcars$cyl, y = mtcars$mpg, ylim = c(0, 40), bty = "n",
pch = 3, col = 2, xlab = "Cylinders",
ylab = "Miles per gallon", main = "Fuel efficiency")

plot(x = mtcars$disp, y = mtcars$mpg, ylim = c(0, 40), bty = "n",
pch = 3, col = 2, xlab = "Displacement",
ylab = "Miles per gallon", main = "Fuel efficiency")

plot(x = mtcars$hp, y = mtcars$mpg, ylim = c(0, 40), bty = "n",
pch = 3, col = 2, xlab = "Horsepower",
ylab = "Miles per gallon", main = "Fuel efficiency")

What if a change is needed (e.g. pch = 16)? Changing all
instances is tedious and error-prone.

Recall Session 2, the DRY principle!
46 [134

Saving effort with argument list calls

In the example above, only x and xlab change. Consolidate
all identical arguments into a named list and re-use them:

a <- list(x = mtcars$hp, xlab = "Horsepower",
y = mtcars$mpg, ylim = c(0, 40), bty = "n",
pch = 3, col = 2, ylab = "Miles per gallon",
main = "Fuel efficiency")

do.call(plot, a)

Change the x variable and axis label - keep the style:

alc("x", "xlab")] <- list(mtcars$cyl, "Cylinders")
do.call(plot, a)

Change the plotting character in the common definition:
a$pch <- 1; do.call(plot, a)
47 | 134

Looping over called arguments

Create lists of constant and changing arguments:

a <- list(y = mtcars$mpg, ylim = c(0, 40),
pch = 3, col = 2, ylab = "Miles per gallon",
bty = "n", main = "Fuel efficiency")

b <- 1ist(# Our first list of lists!

list(x = mtcars$hp, xlab = "Horsepower"),
list(x = mtcars$cyl, xlab = "Cylinders"),
list(x = mtcars$disp, xlab = "Displacement"))

Substitute dynamically and enjoy the show:

for (i in 1:3) {
do.call(plot, c(a, b[[i]l]))
Sys.sleep(1)}

48 [134

Looping over called arguments - result

Fuel efficiency Fuel efficiency Fuel efficiency
o o o
c N c ~ c ~
S o i s o 5 o &
T ™ ++ + T ™ T ™ jj
o i, o " O s
5 S 5§ 8 5 S H 4t
= e t o+ 2 % > o FHE 4
R + 2 3 o g +H
= = =
o o o
50 150 250 4 5 6 7 8 100 200 300 400
Horsepower Cylinders Displacement

Avoid repetition in places where changes can be expected
in the future.

49 [134

Capturing ellipses as a list

It is possible capture the ellipsis into a list and treat it as
any other list:

f <- function (...) {
a <- list(...)

print(a)
}
f(1:3) # Returns a list of length 1
#> [[1]]
#> 12 3
f(anything = "is", possible = 1:3, 100)
#> $anything $possible [[3]]
#> "is" 123 100

50/ 134

Being selective with ellipses

If an inner function g fails with all named arguments of the
main function, call g with a sub-list of list(...).
mean(c(1:9, 100, NA), na.rm = T, trim = 0.1)

sd(c(1:9, 100, NA), na.rm = T) # lWorks
sd(c(1:9, 100, NA), na.rm = T, trim = 0.1) # Error

meanSD <- function(x, ...) {
a <- list(...)
a$x <- x
m <- do.call(mean, a)
s <- do.call(sd, alnames(a) != "trim"])
c(mean = m, SD = s)

hy

meanSD(c(1:9, 100, NA))
meanSD(c(1:9, 100, NA), na.rm
meanSD(c(1:9, 100, NA), na.rm

T
T, trim = 0.1)

51/ 134

Ellipses in these slides

Recall Session 1, ‘Amount of technical de- \Best practi

. : How to get
tail per session’. NB: the black text over R\packag
black lines is somehow unobstructed. RStudic

Data type
This is achieved with ... + calls of text (). o

- Create 12 angles {a}'% from 0°to 330°(like a clock face)
* Inaloop overi € 1,12, call text() at x +0.1cosq,,

y +0.1sina; with white colour
« Call text() at (x,y) with black colour

- If one requests smaller text / different font, both white and
black text () calls are using the same custom parameters

We shall learn how to create such plots in Session 5.
52 /134

Text with white halo - simple version

textHalo <- function(x, y, labels, ...) {
angl <- seq(0, 11/6*pi, length.out = 12)
args <- list(...)
args$labels <- labels
args$col <- "white"
for (i in 1:12) {
args$x <- x + 0.1%cos(angl[i])
args$y <- y + 0.1*sin(angl[i])
do.call(text, args)
}
text(x = x, y = y, labels = labels, ...)
s
plot(0:15, rep(5, 16), pch = 1:16, cex = 3.5,
ylim = c(0, 18), bty = "n", asp = 1)
textHalo(8, 5, "This is a test", font = 2

, cex = 3)

53/134

Compare the legibility

| OA+XCThistsiattest X i m @ lo A+ XCThisvislattest @ i m @

Without halo With a halo

Q: how can textHalo() be improved?

54 [134

Any questions on argument lists and calls?

Debugging

Functions should be used responsibly

THIS 19 YOUR MACHINE LEPRNING SYSTET?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON HE OTHER SIDE.

WHAT IF THE ANSLIERS ARE LRONG? J

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

L

Technical explanation

55/ 134

https://www.explainxkcd.com/wiki/index.php/1838:_Machine_Learning

Reasons for debugging

With scripts containing no functions, it is easy to find the
error: evaluation simply stops there.

However, if you wrote a 200-line function, its failure implies
that the error must be located.

If you are using an external function / package, the error
can be caused by hard-to-reach code.

How to reach it?

56 / 134

Debugging methods

One only knows that there is a need for debugging if the
evaluation fails (programme error) or (if there is no error) if
the resuls looks strange (eyeball / formal test).

« Change the function, insert print() in key places
- Every available function can be modified
« Print summary of intermediate objects or the ol’ reliable
print("Made it to here! 3")
- If the function relies on other functions ‘hidden’ in package
namespaces, requires more effort
- Software debugger: step-by-step execution
« Going inside functions
- Step-by-step execution
- Explore local variables in the memory
« Trace which function calls which one
57 [134

Debugging: real example

- A week ago, our colleague was trying to plot estimation
results for a model

- Estimation succeeded, but plotting failed

The error is caused by some internal function deep down
the call chain - we cannot copy-paste the source easily.

58 / 134

Non-functioning code

install.packages(c("BMS", "haven"))

library(BMS) # Bayesian estimation

library(haven)

d <- read_dta("LEVEL_trial_A.dta")

d <- d[complete.cases(d),]

set.seed(1)

mod <- bms(d, burn = 10000, iter = 100000,
mprior = "uniform", mcmc = "bd",
user.int = FALSE, logfile = "")

image(mod) # Error
plot(mod) # Only 1 / 2 plots

59 [134

Traceback

Function f, calls f,, which calls f; and g5, and g, calls h
(which can be from package p)...

traceback()

#> 5: crossprod(bmao$arguments$X.datal, 1] -

mean (bmao$arguments$X.datal, 1]))

#> 4: as.vector(crossprod(bmao$arguments$X.datal, 1]
~» - mean(bmao$arguments$X.datal, 1])))

#> 3: pmp.bma(x, oldstyle = TRUE)

#> 2: image.bma(mod)

#> 1: image(mod)

)

60 /134

Traceback conclusions

« image() calls the image.bma() method, which calls the
pmp.bma() function (posterior model probabilities)
« pmp.bma() fails in the line where a cross-product and a
mean is computed
« crossprod(): requires numeric / complex matrix /
vector arguments

- mean.default(bmao$arguments$X.datal, 11):
argument is not numeric or logical: returning NA

61/ 134

Enable / disable debugging

« debugonce(functionName): enable step-by-step
evaluation of once certain function for one time

« debug(fnName), undebug(fnName): enable or disable
such evaluation at every run

62/ 134

Practice makes perfect

Live demonstration time!

63 /134

Going inside functions with debugonce()

debugonce(pmp.bma)
pmp . bma(mod)

Press or type ‘n’ in the console to advance by 1 line.

Here is the culprit:

mean(bmao$arguments$X.datal, 11)
#> NA

#> Warning message:
#> In mean.default(bmao$arguments$X.datal, 1]) :
#> argument is not numeric or logical: returning NA

64 [134

Problematic argument

How can the mean of a numeric vector without NA’s be NA?

head(bmao$arguments$X.datal, 11)
#> # A tibble: 6 x 1

#> pcc
#> <db1>
#> 1 0.00933
#> 2 0.462
#> 3 0.0179
#> <...>

class(bmao$arguments$X.datal, 1])
#> "tbl_df" "tbl" "data.frame"

Shockingly, X.data[, 1] is nota numeric vector; the
dimensions are not dropped — the data.frame attributes
are not lost — X.data[, 1] remains a list (data frames are

lists) — mean() is not defined on lists.
65 [/ 134

Fixing the problem

Turns out, the input data set belongs to a custom class
(‘tibble’) that does not behave like a data frame would
(here, it remained a list after 1 column was selected).

d <- read_dta("LEVEL_trial_A.dta")
d <- d[complete.cases(d),]
d <- as.data.frame(d) # <=== ADD THIS LINE

Then, everything works.
Help page for ?bms:
bms(X.data, ...)

#> X.data -- a data frame or a matrix...

66 / 134

Tips for avoiding similar bugs

« Functions from one package do not work well with
custom classes provided by other packages
- Suffering from success: the ecosystem is proliferating, the
community of contributors is very diverse
- sandwich, stargazer etc. support certain model classes
from certain packages, but not all
« Your collaborators can be working in Python, Matlab etc.
« They have no idea what a ‘tibble’ is
« The least common denominator is a numeric array
« Use any package the does the job for you, but convert
the output to standard classes
+ Read the help page for the functions that you are using;
make sure that the input belongs to a correct class: matrix
— as.matrix(), DF - as.data.frame()
« Check the properties of inputs used in help-page examples
67/ 134

Adding breakpoints with browser()

f <- function(data) {
n <- nrow(data)
mod <- 1m(mpg ~ cyl + hp, data = data)
browser()
s <- sd(data$mpg)
list(n.obs = n, SD = s, coef = coef(mod))

}
f(mtcars) # Works

d <- mtcars; d$mpg[10] <- NA
f(d) # One of the outputs is NA

Uncomment the browser() line and run £(); explore the
memory at the breakpoint. n an mod are available. Check
length(mod$residuals).

68 [134

Print debugging

Sometimes, simple methods are the best.

f <- function(data) {
n <- nrow(data)
cat("Number of rows in 'data': ", n, "\n")
mod <- lm(mpg ~ cyl + hp, data = data)
cat("Number of obs in 'mod': ",
length(mod$residuals), "\n")
s <- sd(data$mpg)
list(n.obs = n, SD = s, coef = coef(mod))
}
d <- mtcars; d$mpg[10] <- NA

f(d)
#> Number of rows in 'data': 32
#> Number of obs in 'mod': 31

69 [134

Debugging with loops

The next section is about getting rid of loops (because they
are ‘bad’ or can be replaced with vectorised functions).
However, for debugging, loops can be kept for easier
browsing via browser ().

f <- function(x) # Nice and vectorised
ifelse(x == 5, stop("I fail here"), x"2)
f(1:10)
fLoop <- function(x) {
for (i in 1:1length(x)) {
print(i)
fF(x[iD}}
fLoop(1:10)

We see the point of failure explicitly.
70 [134

Catching exceptions

Catching errors, especially in large-scale simulations or
complex procedures is essential to allow some progress
even in the presence of errors.

In economic research:

- Bootstrap replications might fail
« Solver or estimation routine might not converge

- Experiments / simulations might throw an error

Use tryCatch() to catch errors and allow the workflow to
continue: in case of a warning or an error, call a different
function that operates on the error / warning itself (or just

returns NULL).
71/ 134

Using tryCatch() for exceptions

f <- function (n) plot(1:2, 1:n) works only for
n = 2. If applied to other n € 1,10, it fails. Allow failures:

f2 <- \(n) tryCatch(f(n), error = \(e) return(e))
res <- lapply(1:10, f2)
res

[[1]] <simpleError in xy.coords(...): 'x' and 'y' lengths differ>
[[2]] NULL
[[3]] <simpleError in xy.coords(...: 'x' and 'y' lengths differ>

Check which returns contain ‘error’ in their class:

sapply(res, \(x) any(grepl("[Ee]lrror", class(x))))
#> T FTTTTTTTT

72 [134

Distinct conditions for tryCatch()

If the function should return something (and cannot
possibly return NULL), return NULL on an error (debug later):

tryCatch(521ist(), error = \(x) NULL)

Return different outputs for errors and warnings:

a <- list(3, "Trap", -4:2)
lapply(a, log) # Fails on a[[2]]
res <- lapply(a, \(x) tryCatch(log(x),
error = \(e) NULL, warning = \(w) "Danger!"))
which(sapply(res, is.null)) # Indices of errors
which(sapply(res, \(x) is.character(x) &%
length(x) == 1 & x[1] == "Danger!")) # Warnings

NB. Depending on the return type, the user might consider
implementing simpler / safer checks.
73/ 134

Any questions on debugging methods?

Vectorisation and parallel computing

Vectorised cutting

To separate a numeric variable into a categorical one (e. g.
0-3 = ‘Fail’, 4-5 = ‘Low’, 6-7 = ‘Medium’, 8-10 = ‘High’), one
may be tempted to use ifelse():

ifelse(x < 0, NA,

ifelse(x <= 3, "Fail",
ifelse(x <= 5, "Low", ...)))

A much better approach is using cut() to cut at certain

levels. k categories require R + 1 cuts (including the left and
right extremes):

cut(x, breaks
labels

c(-Inf, -le-16, 3, 5, 7, 10, Inf),
c(NA, "Fail","Low","Med","Hi",NA))

74 [134

Greatest sin: growing objects

The crucial thing to carry away form this course: never grow
objects in loops by prepending / concatenating / binding.
Always allocate space for the results and fill the result
vector element by element.

Users often add columns to data frames one by one in a
loop. This leads to catastrophic inefficiency, up to the point
of halting, especially with big data.

Think like a computer: it is faster to process 1000 smaller
objects than 1 large object 1000 times.

Unless you know that the loop is short and the object size is
small, do not concatenate objects with themselves.

75/ 134

Possible vector-creating solutions

Task: create a vector of\/f fori=1,2,..,n.

Best: avoid loops at all if the function is vectorised (more
on that later).
system.time({a <- sqrt(1:n)})

Next best: initialise result vectors (C/C++ flavour).

a <- numeric(n) # A vector of zeros
system.time({for (i in 1:n) al[il <- sqrt(i)})

Bad: concatenate the old vector and new value.

a <- NULL
system.time({for (i in 1:n) a <- c(a, sqrt(i))})

76 [134

Timing of object growing, milliseconds

sqrt(1:n) alil<- c(a, ...)
n=20 0.002 1.6 190
n =2000 0.008 1.8 193
n =200000 0.570 13.1 33160

- Research in 2013: on a large data set (e.g. 1-minute
returns of 100 stocks for 15 years), compute hourly
variances. If each value takes 1 ms, the total run time of
a <- c(a, ...)is=300years

« Research in 2023: computing 1-minute volatilities from
1-second returns via growing would take 300 m years

77 [134

Average object grower

78 [134

Initialising vectors

Create vectors of given length and specified type:

numeric(100) # Filled with zeros
character(100) # Filled with ""
logical(100) # Filled with FALSE
rep(NA, 100) # Not assuming any class
matrix(NA, nrow = 3, ncol = 4)
vector(mode = "list", length = 10)

Reserving memory and declaring the desired type is the
best solution to avoid object growing.

79 /134

Use of NULL for growing objects

Recall the slowest solution:

a <- NULL # Initialised to length 0O
for (i in 1:100) a <- c(a, sqrt(i))

Such concatenation for growing objects is strongly
discouraged. In most cases, there is a much faster and
memory-efficient loop-free solution.

However, when the loop is guaranteed to be short and the
grown objects do not take up much memory, such growing
method (starting from NULL) can be viable.

80/ 134

Processing split data without loops

Benefits of lists: they can be processed by loop-less
operations. Learn to love them!

- Even if the calculations are long (e. g. estimating a
complex non-linear model for each year in a panel), they
can be parallelised efficiently over CPU cores

Can you read this in human English?

d.list <- split(d, d$id)
res.list <- lapply(d.list, function(x) {
if (mean(x$income[x$cond1l])<1)
x$incNA[x$cond2] <- NA
return(x)
B
d <- do.call(rbind, res.list)

81/ 134

The apply family of functions

The apply (), Lapply(), sapply() functions are incredibly
useful.

- apply(): compute statistics across the selected
dimensions of multisimensional arrays

- Typical use: compute something by row or a column of a
matrix (e. g. standard deviation by column, the percentage
of missing observations per row)

« lapply(x): apply a function to each element of the
vector x and return a list

- Lists are also vectors

« sapply(x): apply a function to each element of the
vector x and simplify the result if possible

82 /134

apply: function across array dimension

Apply any function across any dimension of a multi-variate
array. Recall the order: 1=rows, 2 = columns, 3 = slices etc.

Compute the standard deviation by column.
apply(mtcars, 2, sd)

Compute the standard deviation by row (silly!).
apply(mtcars, 1, sd)

Which observation is the closest to the median?

f <- \(x) which.min(abs(x - median(x)))
apply(mtcars, 2, f)

NB. If there are multiple identical values, which.min()
returns the first index.
83 /134

apply with 3D arrays

We create a synthetic 3D array with 100 slices where every
slice is equal to mtcars plus some random noise.

nr <- nrow(mtcars); nc <- ncol(mtcars)
a <- array(NA, dim = c(nr, nc, 100))
set.seed(1)
for (i in 1:100)
al,,i] <- as.matrix(mtcars) + 0.1*rnorm(nr*nc)
dimnames(a) <- list(rownames(mtcars),
colnames(mtcars), paste@("s", 1:100))

Compute the SD by column (all rows, all slices) and compare
it to the original:

apply(a, 2, sd)
apply(mtcars, 2, sd) # Should be similar

84 [134

apply across multiple dimensions

Compute the SD across all slices - eliminate the slice
dimension (3), keep the row (1) and columns (2) to indicate
what the SD was for row i, column j, all slices.

apply(a, c(1, 2), sd)

The result should be around 0.1 because we added random
white noise with SD 0.1 to every element of the original
matrix multiple times.

Hint: the dimensions passed to apply() are kept - the
remaining ones are collapsed.

85/ 134

apply with extra arguments

If the function f used in apply () accepts extra arguments,
they can be supplied to apply () directly because...they will
be carefully captured by the ellipsis (rii) and passed to

fO.

Prepare data for copying and pasting to BIgXin just 2 lines
without any extra packages:

r <- apply(mtcars, 1, paste®, collapse = " & ")
cat(pasted@(r, " \\\\"), sep = "\n")

Excel will accept tab-separated values:

||\.t||)

r <- apply(mtcars, 1, paste0, collapse
cat(r, sep = "\n")

86 /134

lapply: function across lists

lapply(x, f) isidentical to a loop:

result <- vector("list", length(x))
for (i in 1:length(x)) result[[i]] <- f(x[[i]])

« If £() returns a list (very common!), aggregating the
results into a list of lists is often the only option

- lapply () saves the day where the function is not
vectorised for some arguments
« Example: trying various tweaking parameters that must be

passed as a length-1 scalar

lapply () is indispensable where the output has varying
length depending on the input and the results cannot be
represented by a rectangular array

87/134

lapply to study tweaking parameters

Recall our equation solver:

f <- function(x) log(x) - x + 1.5
uniroot(f, interval = c(1, 3), tol = 1e-8)

But what does the tolerance argument, tol, do? Intuition: if
we are solving f(x) = 0, maybe the lenience of the solver
(accepting slightly worse answers)?

uniroot(f, interval = c(1, 3),
tol = c(le-2, le-4, 1le-6))

Example of unexpected behaviour: we requested
3 tolerances and got only 1 result because conceptually
uniroot() is programmed to do only one thing: find and

return one root.
88 /134

Getting vectors from lapply() returns

tols <- 10%seq(-2, -12, -0.25) # le-2 ... le-12
r <- lapply(tols, function(y)

uniroot(f, interval = c(1, 3), tol = y))
str(r)

For each value of tolerance, we got a full evaluation of the
function an a list as each output value.

Extract the ‘lenience’ measure: f(root) =6, 6 =0, but 6 # 0.

err <- unlist(lapply(r, "[[", "f.root"))
plot(tols, abs(err), log = "xy")

89/ 134

sapply: combining homogeneous outputs

If the output of £() is a scalar but the function is not
vectorised, calling it with lTapply() will create a list of
length-1 outputs. It could be nice to simplify it to a vector.

sapply(x) simply calls Lapply(x) and checks if the
lengths of the returnes elements are equal.

« If £() returns a scalar, sapply(x, f) returns a vector of
length length(x)

« If () returns a vector, sapply(x, f) returnsa matrix
by column-binding the outputs

90 /134

Getting simplified returns with sapply()

For a vector of tolerances, compute a vector of errors at the
solution found by the root finder:

tols <- 10”seq(-1, -8, -0.25)

err <- sapply(tols, \(y)

uniroot(f, interval=c(1l, 3), tol=y)$f.root)
plot(tols, abs(err), log = "xy")

For every variable of mtcars, compute the average and
standard deviation:

meanSD <- \(x) c(mean = mean(x), SD = sd(x))
sapply(mtcars, meanSD)

mtcars is a data frame = a list. This is why DFs are handy:

lapply() and sapply() work with them.
91/ 134

Vectorising loops

Think of a loop as of a function of the iterator. To vectorise
a loop, take the entire expression in curly braces (the body
of the loop) and declare it as a function of the iterator
(excluding the assignments in parent environments).

Compare the two - only the return value changes:

res <- vector("list", 100) f <- function(i) {

for (1 in 1:100) { m <- cor(mtcars)

m <- cor(mtcars) Sys.sleep(0.1)
Sys.sleep(0.1) if (i%%10 == 0) print(i)
if (i%%10 == 0) print(i) return(m)

res[[i]] <- m

} res <- lapply(1:100, f)

Benefits: Lapply () is immediately parallelisable.
92 /134

Direct vectorisation

+ Define vectorised versions via sapply ()

- Use Vectorize() as a convenience wrapper (to
vectorise w.r.t. selected arguments)

Example: compute f(n) =3 iforn e{3,4,7}

f <- function(n) sum(1:n)

x <- ¢c(3, 4, 7)

f(x) # Throws a warnings, does not work
vf <- Vectorize(f)

vf(x) # 6 10 28

vf2 <- function(x) sapply(x, f)
vE2(x) # 6 10 28

93 /134

Why parallel and vectorised processing

 Moore’s law is no longer applicable (clock speed = heat
output)

« Modern processors support some parallel instructions
(AVX512: vector exponentiation, fused mult-add...)

- But it is upon us whether those capabilities are used

« Interpreted programming languages tend to be slower

94 [134

Most useful parallelisation applications

There is some sort of law working here, whereby sta-
tistical methodology always expands to strain the
current limits of computation. B. Efron (2000).

« Computationally costly Monte Carlo simulations

- Splitting big data into chunks

« Trying many sets of tweaking parameters to see which
one works

- Bootstrapping
- Comparison of alternative confidence intervals
« Selection of optimal block size in time-series models
« Distribution of any complex statistic in general

95 [134

Supercomputers nowadays (incl. UL HPC)

100 T

—1
wn
()]
(2]
—

2000

2005

2010

2015

2020

W Linux
unix
MNA/mMixed

W Windows
BsD

W Mac

96 [134

Parallelisation in R

Two facilities:

« parLapply
- mclapply (not on Windows)

parLapply workflow:

1. Create a cluster with cores
2. Export the objects
3. Run the function over a list in the cluster

97 | 134

Comparison on parallelisation types

On a machine with multiple cores, one can run parallel
computations in two ways.

- Forking: multiple processes (rsession) are spawned
with full environments

« The fastest approach, but does not work on Windows
« Can be memory-consuming - mind the bulky objects
- Socket communication: the master process exchanges
memory and objects with child processes
« Available on Win + Mac + Linux
« Consumes less memory, but is slower due to the overhead
+ Requires many extra actions from the user

98 [134

mclapply is easier in most cases

Developers hate extra actions - they usually develop
support for forking first: it is easy. Compare the parallel
bootstrap implementations (from the March 2023 course):

library(parallel) # This example will not run

parBoot <- function(...) boot::boot(data = d,

-~ statistic = bootCoefT, R = 999, ...)

if (.Platform$0S.type == "windows") {
cl <- makeCluster(4)
clusterExport(cl, c("bootCoefT", "myRegCoef"))
res <- parBoot(parallel="snow", cl=cl, ncpus=4))
stopCluster(cl)

} else { # 0On non-Windows systems, just 1 line
res <- parBoot(parallel="multicore", ncpus=4)

99 [134

Maximising our utility with PSOCK

However, many participants are using Windows at the
moment, and one of the goals of this course is to make
everyone’s life easier.

We adopt the next best solution that suits everyone:
creating PSOCK clusters.

1. Create a cluster

2. Export all the objects used by the function into the
cluster + load the packages

3. Use a parallel version of Lapply () on the cluster
4, Stop the cluster manually

100 / 134

Speeding up slow functions

Serial evaluation of £() is slow (30 s):

f <- function(x) {
Sys.sleep(3); print(x)
return(x”2)

I
system.time(retl <- lapply(1:10, f))

Parallel evaluation depends on the number of cores:

library(parallel)

cl <- makeCluster(4)

system.time(ret2 <- parLapply(cl=cl, X=1:10, f))
stopCluster(cl)

Try using 2 or 3 cores instead of 4 and compare the timing.
101/ 134

Monitoring parallel execution

So far, the output has been silent because PSOCK clusters
do not communicate by default. Enable returning the
standard messages into the common console using the
outfile = "" argument:

f <- function(x) {

Sys.sleep(3); print(x)

return(x”2)}
library(parallel)
cl <- makeCluster(4, outfile = "")
system.time(ret <- parLapply(cl=cl, X=1:10, f))
stopCluster(cl)

NB. The tasks are not done in the original order. Always a
good idea to print something to track the progress.
102/ 134

Exporting global objects to the cluster

Non-pure functions are often applied to global objects.

library(MASS) # For MASS::psi.huber
d <- mtcars

f <- \(v) psi.huber(d[1, v])
lapply(c("mpg", "cyl"),) # Works

Since MASS and d belong to the global memory, this fails:

cl <- makeCluster(4)
parLapply(cl = ¢, X = c("mpg", "cyl"™),)

Export the objects (character vector of object names) and
load the packages in the cluster:

clusterExport(cl, "d")

clusterEvalQ(cl, library(MASS))
parLapply(cl = ¢cl, X = c("mpg", "cyl"™), f)
stopCluster(cl)

103/ 134

Overhead

More function calls result in more overhead. Compare:

« Generating 10 000 batches of 1000 random numbers
 Generating 10 000 000 random numbers at once

set.seed(1)

microbenchmark: :microbenchmark(
replicate (10000, runif(1000)),
matrix(runif(1e7), ncol = 10000),
times = 20)

0.5
0.2
Twice as slow!

104 [134

The penalty for loops is everywhere

Even in C++, where there are no theoretical penalties for
double-looping over a matrix, some loops are better than
others.

Example: compute a G x N matrix of kernel weights from
observations {Xj}j'\i1 on a grid {gi},-G=1 with bandwidth:

g,'_Xj
wij} = k(b)

Each function call in R is penalised because it does the
extra checks (classes etc.).

Call as few functions as possible.
105/ 134

Low-level speed-ups

C-like programming languages have the luxury of
fine-tuning for performance gains.

- Enforcing special processor instructions (SIMD = single
instruction, multiple data)

- Tweaking the memory layout (to reduce the latency of
RAM-to-CPU data transfer, or CPU cache optimisation)

- Data dependencies
» Ifcy=a,+by, ¢, =a,+ by, d = ¢y -y, then, the compiler may
optimise the code to compute ¢, and ¢, simultaneously

However, none of this is available in R or other high-level
languages; therefore, we should work smarter.

106 / 134

Minimising overhead in loops

Bad approach:

for (i in 1:6) {
for (3 in 1:N) w[i, 3] = k(Cg[i]-x[31)/b)
I

Good approach:

1. Define phi, a vectorised version of R via an sapply();
« Maybe k can even handle vectors out of the box

2. Use only for (i in 1:6) with phi((g[i]-x)/b)
(since g[i] is a scalar and x is a vector)

Even better: observe that the division can be done once.
- Generate g, = g/b, X, = X/b, use phi(gb[j] - xb)
107/ 134

High-level speed-ups

The smartest way of doing work is... not doing work at all.

« Never do the same work twice
- Save and reuse intermediate operations

« Optimise core functions that are called multiple times
« Constructing a matrix quickly is more important for speed
than tweaking the model solver searching for the
parameter using this matrix repeatedly

- Apply better algorithms, clever maths, and domain
knowledge

« Always check up-to-date practices for common tasks:
sorting, merging, numerical optimisation

« Make sure that the chosen algorithm is applicable to the
problem: if you are wrong, it does not matter how quickly

108 / 134

R-specific speed-ups

Do not grab more data than immediately necessary
« Work with smaller objects to save memory or simpler data
types (character — factor) or use integer types
Avoid overhead by using vectorised functions
« Everything that happens in a loop is addled with overhead

Parallelise (preferably at the outermost level)

Use lists to split huge panel data sets when non-trivial
per-unit operations are necessary

« Save memory by processing independent small chunks

« The job can be parallelised over the chunks

109 / 134

Look for nestable & separable operations

For a panel data set d with many rows, never write
if (d$id == i & d$time = t) ...
The check for i does not depend on the check by t.

If something is computed for each unit i (internal
optimisations, extra checks, transformations), split the data
into a list and use mclapply() / parLapply().

- Is overlooked in the tidyverse functions: they discourage
time- and memory-saving parallel (l)application

« Cura te ipsum: split the data — (l)apply any functions
from any package — unsplit

110/ 134

How to balance loads?

If you have the luxury of not having to use Windows, use
mclapply for quick tasks (spawns several processes
instantly) on Unix-like systems.

For larger / non-homogeneous tasks, use makeCluster;
supports super-computer clusters.

Demonstration: comparing 10 000 quick operations vs 20
long ones.

Benchmark first to see if overhead is a problem.

1M11/134

Disabling explicit load balancing

R pre-assigns n tasks to k cores (n/k + 1 tasks per core). If
different evaluations of () take vastly different amounts of
time (and they take a long time), then, some cores may
terminate earlier and be idling.

- Common case: trying a grid of parameter values (e. g.
random forest depth, penalising constants) - cores with
the shallowest forests return the value more quickly.

Disable load balancing to keep all CPUs occupied with the
next unprocessed vector item:
mclapply(1:100, f, mc.cores = 8,

mc.preschedule = FALSE) # Default is TRUE
parLapplyLB(cl, 1:100, f) # Instead of parLapply

112/ 134

Any questions on vectorised and parallelised operations?

Speeding up, benchmarking, profiling

Is optimisation necessary?

We should forget about small efficiencies, say about
97% of the time: premature optimisation is the root of
all evil. Yet we should not pass up our opportunities
in that critical 3%.

Programmers waste enormous amounts of time think-
ing about, or worrying about, the speed of non-critical
parts of their programs, and these attempts at effi-
ciency actually have a strong negative impact when
debugging and maintenance are considered.

Donald Erwin Knuth.

113/ 134

Measuring the execution time

Use system.time() to record the execution time - the
input must be an expression (e. g. a function).

f <- function(n) sum(rep(mtcars$mpg, n))
system.time(f(1eéb))
system.time(f(1e7))

Record the time stamps with Sys.time():

ticO® <- Sys.time()

f(1leb)

ticl <- Sys.time()

f(1e7)

tic2 <- Sys.time()
print(difftime(ticl, ticO, units
print(difftime(tic2, ticl, units

"sec"))
"sec"))

14/ 134

Fine micro-benchmarking

The microbenckmark is immensely useful for timing of very
quick operations at the nano-second level.

system.time(replicate(10, runif(100))) # Crude

microbenchmark: :microbenchmark(
replicate(10, runif(100)),
matrix(runif(1e3), ncol = 100), # 0.28 s
times = 20) # The default is 100

NB. Some functions are compiled just-in-time - repeated
evaluations with the same arguments may be faster due to
result memoisation (sic) - saving the results of
computations and recalling them without recomputation for
the same inputs.

115/ 134

Profiling the code

Recall traceback(): the function stack can be very deep.

Suppose that a regression with time series is estimated:

set.seed(1)

n <- le4 # Number of observations

k <- 10 # Number of regressors

x <- matrix(runif(n*k, 0, 10), nrow = n)
y <- 1 + x[,1] + rnorm(n)*rowSums(abs(x))
mod <- lm(y ~ x)

Autocorrelation-robust standard errors are slow:

library(sandwich)
system.time(vcovHAC(mod))

However, system.time (NeweyWest(mod)) is fast! Why?
116 / 134

Using the built-in profiler

Enable and disable the profiler:

Rprof ("my.txt")
kernHAC (mod)

Rprof (NULL)
summaryRprof("my.txt")

Visualise the calls with the profvis package:

profvis::profvis(kernHAC(mod))

Turns out, it is busy computing cross-products...

profvis: :profvis(NeweyWest(mod))

117/ 134

Flame graph

profvis::profvis(kernHAC(mod))

b bw
<GC>
sssss prod
meatHAC
VCOVHAC . default
kernHAC

sample Interval: 10ms 1880ms

profvis: :profvis(NeweyWest(mod))

complete. cases

na_fail default t.default

ar.ols ar.ols

ar ar sprod

meatHAC meathAC

veovHAC default vcovHAC default

%% Neweyest

0 10 20] 40 50 L 70
sample Interval: 10ms 0

This is the timeline of the functions called at all levels.
Conclusion: kernHAC() is too busy with cross-products.

118/ 134

Quenching function appetite

Without any technicalities, we cut down the amount of
cross-products by using a different kernel (the default one
had long ‘tails’, requiring more arithmetic operations):

system.time(kernHAC(mod, kernel = "Truncated"))

In every application, find the slowest function and think
why it is so slow.

« Maybe some operations are redundant
« If [is too slow, try to avoid subsetting

« Maybe there are legacy checks - speed them up

119/ 134

Exercise in benchmarking

Task:

1. For each individual, compute the average 2004-2007
income, I;

2. IfI. < 1, replace their 2008-2019 income with NA

‘Toy’ panel data set (recall the panel from Session 2):

set.seed(1)
n <- 5000 # Individuals
p <- 23 # Periods
ids <- (1:n)*1000 + 1
ps <- 2000 + 1:p
d <- data.frame(id = rep(ids, each = p),
period = rep(ps, n), income = rchisq(n*p, 2))
d$incNA <- d$income # To avoid overwriting

120 / 134

Conditional replacement - straightforward

for (i in ids) {
condl <- (d$id==i) & (d$period %in% 2004:2007)
Ia <- mean(d$income[cond1]) # Income average
cond2 <- (d$id==1i) & (d$period %in% 2008:2019)
if (Ia < 1) d$incNA[cond2] <- NA

}

This inefficient beast takes 43 seconds to run; this is why:

1. %1in% 2008:2019 is slow because it makes 12 checks
(against every value: ==2008, ==2009, ..., ==2019)

2. cond? is needed only if Ia<1 (only 7% cases) — wasted
115k x 13 x 5000 = 7 bn (!) checks

3. There are 115000 rows in d; condl requires
115k x5 x 5000 = 3 bn checks

121/ 134

Conditional replacement - speed-up 1

Replace %in% checks with simple >= and <=.

for (i in ids) {
condl <- (d$id == i) &
(d$period >= 2004) & (d$period <= 2007)
Ia <- mean(d$income[condl])
cond2 <- (d$id == i) &
(d$period >= 2008) & (d$period <= 2019)
if (Ia < 1) d$incNA[cond2] <- NA
s

Now this takes only 14 s - quick, easy, low-hanging fruit.

122/ 134

Conditional replacement - speed-up 2

Checking d$id == i twice is redundant - save and reuse
the result of this evaluation.

for (i in ids) {
cond.id <- d$id == i # Saved this
condl <- cond.id &
(d$period >= 2004) & (d$period <= 2007)
Ia <- mean(d$income[condl])
cond2 <- cond.id &
(d$period >= 2008) & (d$period <= 2019)
if (Ia < 1) d$incNA[cond2] <- NA
}

Now this takes only 13 s — not much, but we can do better.

123/ 134

Conditional replacement - speed-up 3

The replacement based on cond?2 is not needed if Ia<1.
Therefore, cond2 should be computed only if Ia < 1:

for (i in ids) {
cond.id <- d$id == i
condl <- cond.id &
(d$period >= 2004) & (d$period <= 2007)
Ia <- mean(d$income[condl])
if (Ia < 1) {
cond2 <- cond.id & # <-- Moved this part
(d$period >= 2008) & (d$period <= 2019)
d$incNA[cond2] <- NA
}
}

Now this takes only 8.5 s — a substantial improvement.
124 | 134

Refactoring ugly lines (same speed)

1. condl and cond?2 are too long - pre-compute the
period conditions and use (id & period) on the fly

2. Writing d$period every time < short name (p)

for (i in ids) {
p <- d$period
cond.id <- d$id == i
cond.pl <- (p >= 2004) & (p <= 2007)
Ia <- mean(d$income[cond.id & cond.pl])
if (Ia < 1) {
cond.p2 <- (p >= 2008) & (p <= 2019)
d$incNA[cond.id & cond.p2] <- NA
}
}

125/ 134

Conditional replacement - speed-up 4

Create a smaller DF (di) for each i to slash redundancy.

for (i in ids) {

cond.id <- d$id == i
di <- d[cond.id,] # A smaller object
p <- di$period # Now based on di

cond.pl <- (p >= 2004) & (p <= 2007)

Ia <- mean(di$income[cond.pl]) # No more cond.id

if (Ia < 1) {
cond.p2 <- (p >= 2008) & (p <= 2019)
di$incNA[cond.p2] <- NA # No more cond.id
dlcond.id, 1 <- di # Put changes back

}

}

Time: 6.7 s. In practice, with large data sets, this trick may
yield big speed-ups and memory economy.
126 [134

Conditional replacement - speed-up 5?

Notice how d$period >= 2004 does not depend on i -
one initial creation of helper variables is enough!

d$pl <- d$period >= 2004 & d$period <= 2007
d$p2 <- d$period >= 2008 & d$period <= 2019
for (i in ids) {
cond.id <- d$id == i
di <- d[cond.id,]
Ia <- mean(di$income[di$p1]) # No more cond.id
if (Ia < 1) {
di$incNA[di$p2] <- NA # No more cond.id
d[cond.id,] <- di
}
}

Time: 8.5 s. What went wrong?
127 [134

Analysis of speed-up 5 failure

In some applications, working on data subframes is indeed
faster (otherwise, this example would not be here - the
perfidy of toy data sets!).

di <- d[cond.id,] adds a new costly operation that had
not existed before - row subsetting for the full DF.

- Creating p1 and p2 increased ncol(d) to 6 - the DF
simply became bulkier (but this is negligible)

« Eliminate this redundant copying — we are only using a
subset of d$income and writing to a subset of d$incNA

* In applicatons with more complex operations for each
subset di (e.g. nested computations in multi-level
panels), the gains owing to subsets can be real

128 / 134

Conditional replacement - speed-up 6

Create helper indicator variables once, but do not copy
dlcond.id, 1].

d$pl <- d$period >= 2004 & d$period <= 2007
d$p2 <- d$period >= 2008 & d$period <= 2019
for (i in ids) {

cond.id <- d$id == i

Ia <- mean(d$income[cond.id & d$p1])

if (Ia < 1) d$incNA[cond.id & d$p2] <- NA
}

Time: 3.8 s. Huge savings (because each object in the
evaluation is a vector, no matrices) + elegant code.

129 / 134

Splitting data frames into lists

Often, long logical vectors for condition-based operations
are too slow. Splitting the data into a list of smaller data
sets may offer substantial gains.

Example above: instead of checking d$id == iin a loop,
split the data into smaller chunks and loop over them.

dlist <- split(d, f = d$id)
for (i in 1:length(dlist)) {
x <- dlist[[i]]
Ia <- mean(x$income[x$p1])
if (Ia < 1) dlist[[i]]$incNA[x$p2] <- NA
I
d <- do.call(rbind, dlist)

130/ 134

Time savings owing to splits

The example above is blazingly fast: 0.95 s.

« Overhead: 0.4 s to split the DF + 0.5 s to rbind the list
- ...and the pure calculations take 0.035 s

If multiple operations are carried out according to a
condition, the only time losses are due to splitting and
binding (and those are tiny compared to the redundant
subsetting slow-down).

Core functionality speed-up: 43 s - 0.035 s = 1200 times!

131/ 134

Merging lists back into data frames

rbind() / cbind() accept multiple input vectors / matrices
to ‘fuse’ them together (resp. vertically / horizontally).
byvar <- rep(1l:4, each = 8)

a <- split(mtcars, f = byvar)

str(a, max.level = 1)

#> List of 4

#> $ 1:'data.frame’: 8 obs. of 11 variables:
#> <...>
#> $ 4:'data.frame’: 8 obs. of 11 variables:

dl <- do.call(rbind, unname(a))
d2 <- unsplit(a, f = byvar)
all.equal(dl, d2) # TRUE

NB. split() gives names to the resulting list a — unname (a)
is necessary to prevent the rownames from becoming
“1.Mazda RX4, ‘2.Merc 230’ etc.

132/ 134

Overhead with small operations

In this example, 5000 operations took 0.035 s — 7 us each
— parallel scheduling overhead can outweigh the gains.

— 'for' loop
lapply
—— mclapply 3 cores
—— mclapply 9 cores
\/ O 50%
\ A 75%
O /A M - 95%
m IIIIIIIIWM_‘.M.MWWWWM\\\\I\ AWy \HI 1| [ITHTIT | |
50 100 150 200

Overhead: 60-90 ms. Compare to 1 function evaluation!

133 /134

Any questions on the bottleneck-finding methodology?

Further reading

- How one programmer reverse-engineered GTA V and
e it load 7 1 :

134 /134

https://www.youtube.com/watch?v=kG1q2LjRiT0
https://www.youtube.com/watch?v=kG1q2LjRiT0

Thank you for your attention!

	How to write functions
	Methods, namespaces, calls & ellipses
	Debugging
	Vectorisation and parallel computing
	Speeding up, benchmarking, profiling

