Empirical research |SING R:

Essentials, real examples, and troubleshooting

Compiled from sessionB5.tex @ 2024-05-15 21:06:14+02:00

Day 5: Graphics and summaries in R

Andrei V. KOSTYRKA Y l
2"d of October 2023 m

UNIVERSITE DU
LUXEMBOURG

Quick recap

We learned:

« How to write functions
« How to debug functions

« How to speed up functions

Today, we shall learn how to make beautiful plots and
illustrations commonly used in applied research.

1/243

Presentation structure

1. Basics of image processing

2. Plots, parameters, and devices

3. Popular plots and tips for them

4. Summarising and aggregating data

5. 3D graphics, animations, and video encoding

2/243

One can draw anything in R

3/243

Personal experience: thesis defence

15 25
[T

5

03 0.6 09
25

15

0

T T T T T — wn ,_'_'_'_._“]
2006 2008 2010 2012 2014 20 40 60 20 40 60

Top: SPDR S&P 500 ETF price. Bottom: conditional correlation Dashed line: true law E(Y | X). Solid lines: OLS model fits.
between the ‘good’ and ‘bad’ market shocks. The darker the shade, the higher the retention probability.

Parsimonious presentation, minimum notation, only one
aspect highlighted.

4 [243

Personal experience: ongoing research

o _ < _
R o |
o IS o ©
¥ ©
2 o | 2 o |
¢ o ¢ o
2 2
B 2 o~
£ © g ©
L :
w
z & 4 z 84
v | w
(=} (=]
f T 1 I T T 1
-04 -03 -02 -01 00 01 02 03 -04 -03 -02 -01 00 01 02 03

When proposing something new, make extensive
comparisons against existing methods / results.

5/243

Personal experience: technical discussions

Bias of the slope estimator (fixed bw, n=1000) Bias of the slope estimator (fixed bw, n=1000)

Bias

Fixed bandwidth

Some presentations are not capable of holding much
information without getting cluttered. 3D plots enable
comparisons of 3 model aspects.

6/243

Personal experience: use in the industry

16000

Split blend borders Seasonality adjustment for CLV PIB

12000 14000
1 1
B
k‘?’@“ .
i
K
.
= =
-
\
==
.
>
o

10000
1
&8
li;
h

8000
L

—— Original
A — Adjusted
s 0
il : — = Trend
1995 2000 2008 ‘ 2010 2015 2020
L 1 1 . . L l 1
M7=0.32 robM7=0.34 (Q2=045 . Multiplicative
g i
o
(SR A WA NAR NN ¥ i) NANANARANRE RN RO AN AN AN TARATANAVINAY RAN SRNN AN E LIS A U 5 UH WS
3 ga:%%%ﬂn Seasonal Calendar
o i

Statec has of thousands of series with different properties.
71/243

Personal experience: use in the industry

T T 1
Qi1 Qz Q3 Q4

Left: original
Right: forced SA

0 1 2 0 1 2

Statec needed automating seasonal diagnostics. A 100-line
function does the adjustment and returns the visuals to
carry out Eurostat-compliant analysis.

8/243

Basics of image processing

Raster images

Raster digital image is a rectangular grid of uniformly sized
pixels taking certain values
« Pixel grid = approximation of a 2D visual phenomenon
obtained by sampling different light wavelengths with
sensors

- Capturing sensors are often non-uniform (e.g. RGBG Bayer
grid), but output LEDs are often uniform

« Reproduced by shining back R, G, & B

- Measured in pixels (usually square) by width and height
(not physical units like cm)

- Typical applications (not limited to): photos, images
with many colours, images with few sharp elements

9/243

Raster pipeline

Imperfect input =

Nikon D600 sensor Raster image Casio EX-Z60 screen
iFixit.com Gringer / Wikipedia

10/ 243

https://www.ifixit.com/Teardown/Nikon+D600+Teardown/10708
https://en.wikipedia.org/wiki/User:gringer?rdfrom=commons:User:Gringer

Vector graphics

Vector image: graphics defined by analytical descriptions of
shapes (points, lines, polygons). Formats: PDF, EPS, SVG...

Raster image Vector image
Infinitely scalable, suitable for simple shapes and

schematic drawings. (We are creating those in R!)
11/243

Lossless and lossy compression

Raster RGB graphics with 8 bits / channel (intensity of R, G,
& B from 0 to 255) = 3 bytes to encode a pixel.
* 6 MB per 1920x1080 FullHD, 36 MB per photo = too much!

Lossless compression: algorithms to reduce file size by
finding redundancies.

+ PNG24: run-length encoding (identify long lines or groups of
identical adjacent pixels)

« TIFF: ZIP or LZW compression (save repeated sequences in a
dictionary and reuse them)

Lossy compression: algorithms allowing certain visual
degradation resulting in desirable space savings.

+ JPEG: throw out high-frequency info from 8x8 blocks
+ GIF/PNGS: use a limited palette (< 256 colours)

12/ 243

PDF as a container

R can export vector graphics as PDF, but...

PDF is not a graphics format. PDF is a container that can
hold raster images, fonts, vector shapes, URLs, sounds,
interactive elements etc.

For common use, PDF is the to-go format for vector
graphics.

Another one is [E]PS ([encapsulated] Post-Script), which is
requested by some academic journals. R can output it, too.

13 /243

Image format recommendation

- For BIEX: PDF, PNG, or (for experts) TikZ
« For Word / Writer: PNG
- For picky journals: whatever they request (TIFF, EPS, TikZ)

Don’t do: PG.

« JPG encoder discards all high-frequency information in
8x8 blocks, which adds artefacts

- Typical R graphics output is replete with thin and crisp lines
« Quality loss even for requested Q=100

« Need smaller PNGs? pngquant is your friend!

« Always crisp, quality does not degrade unless one
specifically requests a very small (8 colours) palette

14 [243

PNG saves space for detail-rich plots

Plotting data sets with > 1000 observations is not
uncommon. Scatter plots with many semi-transparent
elements give the general idea about a distribution.

PDF saves each shape (every circle, every line), but:

« Storing > 1000 coordinates inflates PDF file size

« Rendering > 10 000 vector shapes on a screen is slow
(may hang PDF viewers)

Solution: create a PNG of a fixed size; more shapes —
differently coloured pixels, but the file size is well capped.

The same holds for 3D surfaces with many facets.

15/ 243

Real example: Angrist & Evans (1998) data

Sample: n = 380000 observations of females from 1990
with at least 2 kids.

It takes 20 s to update this preview in RStudio.

Mean
100K - - Median

10k l . l i g - Qland@3
) ' |1 .
100 E

- - - - -

T T T

Income, $

o o o
T 1
2 4 6 8 10

Number of kids

PNG24: 31 kB, pngquant PNGS8: 19 kB. PDF: 21200 kB (!).
16 / 243

Getting the image tools

imagemagick: the most popular command-line image
conversion utility in the world. Automate image format
conversion: re-compress TIFF, convert PNG to JPEG and
merge to PDF, resize, change DPI, brighten etc.

« Windows: download the binary from imagemagick.org

« Mac: install via Homebrew. To get Homebrew:
/bin/bash -c¢ "$(curl -fsSL https://r‘aw.githubuser*J

-~ content.com/Homebrew/install/HEAD/install.sh)"
brew install imagemagick

« Linux: already pre-installed on Ubuntu, otherwise install
imagemagick with your favourite package manager

17/ 243

https://imagemagick.org/

imagemagick is quick and intuitive

« Convert all TIFF files to JPG with quality 60%:
mogrify -format jpg -quality 60 x.tiff

- Merge all JPGs into a single PDF (losslessly):
convert *.jpg out.pdf
+ Resize an image by 50%, convert to greyscale, increase

contrast with levels to get rid of paper noise:
convert in.jpg -resize 50% -colorspace Gray

-level 10%,90% out.3jpg
No online converters or clicking in GUIs; automate locally,
avoid menial work! Write once, run always.

18/ 243

Getting the video tools

ffmpeg: the most popular command-line video transcoder.

« Windows: download from ffmpeg.org
« The binaries are at gyan.dev

* Mac: brew install ffmpeg

- Linux: install ffmpeg with your favourite package
manager

« Compiling from source adds support for HEVC, FDK AAC,
AV1, and other highly efficient modern formats

Very intuitive, too. No need to use Adobe After Effects /
Sony Vegas / shady online services that add watermarks to
merge, resize, and compress MP4 files.

19/243

https://ffmpeg.org/
https://www.gyan.dev/ffmpeg/builds/ffmpeg-release-full.7z

ffmpeg is quick and intuitive

« Convert a sequence of PNG images into a 24-FPS video:
ffmpeg -framerate 24 -pattern_type glob -i '*.png'
-pix_fmt yuv420p -c:v 1ibx264 -crf 25 out.mp4
« Split without re-encoding (how I upload to Moodle):

ffmpeg -i sessionB4.mp4 -to 01:18:06 -c:a copy
-C:v copy sessionB4-pl.mp4

ffmpeg -1 sessionB4.mp4 -ss 01:28:26 -c:a copy
-Cc:v copy session@4-p2.mp4

Blazingly fast: takes 1s for a 270 000-frame file.
« Shrink a video to 640 px by width, re-compress with the
highly efficient codec:

ffmpeg -i in.mp4 -filter:v "scale=640:-1"
-c:v 1ibx265 -crf 32 -c:a copy out.mp4

20 /243

Lossless PNG optimisation

optipng: command-line utility to losslessly re-compress
PNG (searching for more optimal encoding schemes when
searching for identical neighbours).

Download page at SourceForge.

Optimise PNGs preserving file attributes (modified etc.):

optipng -preserve *.png

Exhaustively search for the best compression scheme
(much slower):

optipng -07 -preserve *.png

21/ 243

https://optipng.sourceforge.net/

Lossy PNG optimisation

pngquant: command-line utility to reduce the number of
colours in a PNG file from 16 mn to 2-256 with as little visual
degradation as possible.

Project page and download.

pngquant --quality 50-60 --verbose --speed 1
--force --ext -opt.png *.png

These PDF slides are so lightweight even with this many
plots because every PNG is pngquant’ed.

Declare a bash function withh all the parameters:

pg () { pnggquant --speed 1 --quality 50-60
--verbose --ext -opt.png --force $1; }

22 /243

https://pngquant.org/

System calls

If a utility can be called from the command line on a
computer, it can be called from within R — a system call is an
invocation of any command that can be executed on an OS.

Type this in the terminal to apply pngquant:

pngquant --quality 60-70 --verbose --speed 1
--force --ext -opt.png sB@5-bidgata.png
Creates s05-bigdata-opt.png

Do the same from within R:

pngs <- list.files(pattern = "\\.png$")
lapply(pngs, \(v) {
e <- paste@("pngquant --quality 60-70 --verbose
--speed 1 --force --ext -opt.png ", v)
print(e); system(e)})
23 /243

System calls to imagemagick

Compress uncompressed TIFFs losslessly:

convert in.tif -density 300 -compress LZW out.tif

Use system() to do the same from R.

tifs <- list.files(pattern = "\\.tiff$")
lapply(tifs, \(v) {

e <- paste@("convert ", v, " -density 300
-compress LZW -verbose ",
gsub("\\.tiff$", "-opt.tiff", v))

print(e); system(e)})

We shall call ffmpeg to create MP4 animations, too.

24 [243

Graphics for journal articles

« The most informative article graphics are non-standard
and depend on the research subject

- Space is expensive; each graph should highlight one key
point of your research

- For internal use / discussions with your collaborators,
plots can be information-dense, technical, highly
diagnostic - but be prepared to strip most of it for the
publication

25/ 243

American Economic Review

Water:

=8 Euphmatesmain branch
=== Euphrates secondary branch

== Tigris main branch

— Tigris secondary branch

Sumer Survey (Adams, 1981)
Diyala Survey (Adams, 1965)
Akkad Survey (Adams, 1857)

N 100

DOI: 10.1257/aer.20201919, DOI: 10.1257/aer.20211879

imil

imma |

NEEE

Persian

Panel A. Approval likelihood

Normal weight

© N
> =

Approval likelihood (1-5)
S
]

»
S

Overweight

(2023) plots

Obesily class |
Obesily class Il
Obesity class Il

o

No Self-
information reported
Financial information

Borrower BMI

Panel C. Financial ability

Normal weight

Financial ability (1-5)
o
5 B

»
b

Overweight

2 H

No Self-

information reported

Financial information
Borrower BMI

26 [243

https://www.aeaweb.org/articles?id=10.1257/aer.20201919
https://www.aeaweb.org/articles?id=10.1257/aer.20211879

American Economic Review (2023) plots

Share + s.e.m.

Share T s.e.m.

Share * s.e.m.

All—compensation

T T
False positive averse False negative averse

coo00000
O=NWAUION

US—compensation

T T
False positive averse False negative averse

OOO000000
OLWRNOND

Norway—compensation

T T
False positive averse False negative averse

OOOO000O
oLhwrIDN®D

DOI: 10.1257/aer.20211015, 10.1257/aer.20191598

Requests

Reservation price (bil rubles)-
Deposit (ths. rubles)

No. of products procured-|
No. of applicants-

Process quality
Pere. of auction volume by bur. in last calendar week-|
Invalid product name-|

Bureaucrats
No. of auctions run by bur. (auc. month)-
Bureaucrat supplier HHI index (volume)
1{bur. bought from supplier in same year|
In-house bureaucrat.|
Participation rate (bur., weighted)-
Bureaucrat success rate-

Auctions

Number of bidders admitted-{
Auction winner not chosen-{
Number of bidders-|

Share of bidders from same county-|
Share of importing bidders-{

Share of bidders from same region-

Variable

Suppliers

Supplier product HH index (auctions)-

1{supp. sold product often (volume)}-

Suppler value of auctions won (cumulative, bi. rubles)
Supplier number of contracts won from large SOEs-|
Supplier number of countries exported to-

Supplier age-

Supplier imports | revenue-

Supplier profit-

1{supplier is private company}-

Supplier profit per employee-

1{supplier is regional government agency|-|
Supplier — impott products-|

1{supplier is from same postal code}

1supplier from same region||

Post-LASSO regression

o

$
IS

4

003 003
Standardized coefficient

27/ 243

https://www.aeaweb.org/articles?id=10.1257/aer.20211015
https://www.aeaweb.org/articles?id=10.1257/aer.20191598

Assume readers’ minimal visual skills

- Deregowski (1976) on Malawi people: ‘Take a picture in
black and white and the natives cannot see it’

+ Requires ‘This is really a picture of an ox and a dog. Look
at the horn of the ox, and there is his tail”

- People who are not exposed to 3D pictures early on
struggle with depth perception (Hudson 1960)

28 [243

Patterns in perception (1/3)

Foreground / background: Attention is focused on one part
of the image, usually smaller or more prominent.

e

Proximity: Elements that are close OO0 OO0

together are perceived as a group. oloNele
OO
ole;

29/ 243

Patterns in perception (2/3)

Similarity: Objects that are alike 00 0000
in form, colour, brightness, or size 00 0000
tend to be grouped in the mind. 00 0000

0 0000

Closure: Tendency to fill in spaces or connect the dots.

30/243

Patterns in perception (3/3)

Symmetry: Similar shapes are grouped
together, regardless of their proximity. { }D q

Common fate: Elements in a common
region are perceived as a group, OD D
regardless of similarity or proximity. /|7

Continuity / smoothness: The mind c

prefers to perceive continuous and

smooth ines (AOB, COD) and avoid g
cusps (COB). A 5

31/ 243

Plots: complexity # beauty

Empirical research in Econ+Fin+Mgmt using R. © Andrei V. Kostyrka, Université du Luxembourg, 2023 32 I 2"‘3

Things to avoid

« Hatching
« Can produce optical illusions

« Vestige of the days when mechanical pen plotters could
not produce solid fills because they were tearing the paper

« If you cannot distinguish between the shades of grey in the
plot, you are using too many shades of grey

+ Pie charts

« Hard to read, hard to make mental comparisons
+ Use bar charts instead

33/243

Colour-vision deficiency

Normal vision (92%) [
Deuteranomaly (2.7%) [P
Protanomaly (0.7%) [
Protanopia (0.6%)
Deuteranopia (0.6%) [
Tritanopia (0.02%) &
Tritanomaly (0.01%)
Achromatopsia (0.0001%)

Colour blindness: does the top spectrum look exactly like
one of the bottom ones?

34 /243

Colour-blind-friendly colours

« The built-in Okabe-Ito palette is a good

start: 900
plot(1:9, 1:9, pch = 16, cex = 5,
col = palette.colors(9,
b (0000

palette = "Okabe-Ito"))

- dichromat package to convert palettes @@ @® @
to colour-deficient ones 0000

« Simulate colour-blind versions of plots at ®
hclwizard.org

35/243

http://hclwizard.org:3000/cvdemulator/

Use redundancies

Journal editors are stricter than accessibility guidelines:
they often require only B/W graphics.

Encode information both in shape and in colour.

- Lines: vary stroke type, thickness, and colour

« Points: vary point character, size, and colour

36 /243

Double redundancy in action

Distinct: hue + brightness + shape (BW: brightness + shape).

Empirical research in Econ+Fin+Mgmt using R. © Andrei V. Kostyrka, Université du Luxembourg, 2023 37 I 2"‘3

base and ggplot2

2 main plotting syntaxes in R: base graphics and ggplot2.

- base graphics are imperative: give instructions to place
elements, and R will follow exactly

« Like the C programming language

- ggplot2 graphics are declarative: give descriptions of
the result that you want to produce

« Like the Haskell programming language

38 /243

Visualisations in base R

Base R graphics are extremely powerful and flexible: they
allow the user to produce absolutely any kind of plot.

« plot() initialises a drawing area on a new device
« Generic method: some object call class-specific routines
+ 95% of everything else can be achieved with

5 commands: points(), lines(), arrows(),
polygon(), abline()

« Remaining 5%: contourLines(), persp() +
trans3d(), rug(), barplot(), boxplot()

« Modify graphic parameters or plotting device settings
for fine tuning

39/243

Advantages of base over ggplot2

- Easier for newcomers

 Fewer functions to memorise

« Break down problems, build visuals up in simple steps

- Straightforward debugging, no call-stack rabbit holes

Full control over the plot

« The canvas is yours, imagination is the limit, no restrictions

« The next step does not break what has been plotted

+ Changes are instantly visible after a function call

Universally applicable

« No need for extra transformations just for plotting, no
dependencies on other packages, all classes welcome

« Works with anything interpretable as a coordinate
Much faster, less memory-hungry, esp. with big data
Is extended by the great Lattice package

40 [243

Advantages of ggplot2 over base

Comes with hundreds of pre-defined templates for a
wide family of popular plot types
« For data with regular structure, invocation is often shorten
than in base R

Many easy-to-understand books and learning resources
targeted at all audiences
« Abundant solutions already written for popular
applications
« Base R graphics documentation does not have many good
examples

Change the theme of all elements quickly

More streamlined margin handling, fewer device errors

41/ 243

Where both ggplot2 and base struggle

« First steps can be tricky

« Default settings can be ugly
+ Always takes many tweaks before the plot looks decent

« Only code and formal declaration of plots, no mouse or
free-hand adjustments in a GUI tool

42 [243

Highest priorities in plotting

People who will tell you to change the plot:

1. Your advisor / supervisor
2. Your journal editor

Pareto 80/20 principle (from experience): making the
ggplot2 output match their suggestions often takes hours
of fiddling with deep settings and ugly work-arounds.

Your Ph.D. time is limited - do not waste it on searching for
pre-cooked solutions. (I have seen people editing PNGs
exported from R in MS Paint... over and over.)

Core principle: if you can compute it, you should be able to

add it directly to the plot without re-structuring plot calls.
43 [243

Recommendation: base first, ggplot2 later

« Anything one can do in ggplot2, one can do in base R
« 5 smaller steps = better than one complex large one

« ggplot2 imposes too rigid a structure on the inputs

 Your model may be non-standard and not recognised by
gg* functions

« The requested fine tweaks may require looking into ggx
source code with nested functions calling one another

« C'mon, | just want to add this small extra notch here... It
has to be simple... what, another reshaping?

+ ‘ggplot2 produces the legend based on what you used’ =
making a custom legend (e. g. with elements different from
used in the plot) is hard for beginners

« So many packages and custom classes, the logical first
step is extracting and reconciling the components

4t [243

ggplot2 itself is written in base R

Extract + ggplot2_3.4.3.tar.gz

& Location: | B3 /qg
Type Modified
Folder 07 August 2!
Folder

Folder

No'srcE: ﬁ)lder
= no C++ codé

Folder

er 07 August 2!

Elh DESCRIPTION unknown 14 August 2

Base R is so powerful, one can write the ggplot2 package
using nothing but base R + core packages.

45 [243

Recall Session 1: two approaches

30
|

® A
» o AA ° A
A ® o A o
ot oot - 4 L Aos ‘..o.'.. Aﬂ‘
z * AA.~ ~. L] .'. ° A; Legend: ? ~ ® ° @
g ZU Agricult S g g []
?E ﬁ.. E A% A“ .. L J * : Catholic é EA , - Atk A“‘... ..Az
g Education = []
= § A‘A .. P .. : L} o | A‘ ° @ .. :
Education
o /A em REIERC
A . T T T T 1
3 % B s o 0 20 40 60 80 100
Education Education
ggplot2, 612 bytes base R, 421 bytes
broken legend correct legend

46 [243

Early steps are always hard

Beginners tend to struggle with ggplot2:

ggplot(swiss, aes(x = Education, y = Infant.Mortality)) +

geom_point(aes(shape = "Education", fill = "Education"),

size = 4, color = "darkorange") +
geom_point(aes(x = Agriculture, shape = "Agriculture",

fill = "Agriculture"), size = 4, color = "darkgreen") +
geom_point(aes(x = Catholic, shape = "Catholic",

fill = "Catholic"), size = 4, color = "navy") +
scale_color_manual(values = c("navy", "darkorange", "darkgreen")) +
scale_fill_manual(values = c("darkorange", "darkgreen", "navy")) +
labs(x = "Education", y = "Infant Mortality", shape = "Legend:",

color = "Legend:", fill = "Legend:") +
theme_classic()

Today, we learn being efficient in base R:

y <- swiss$Infant.Mortality

xs <- c("Education", "Agriculture", "Catholic")
cls <- c("darkorange", "darkgreen", "navy")
plot(swiss[, xs[11], v,

pch = 15, col = cls[1], cex = 2, bty = "n",

xlab = xs[1], ylab = "Infant Mortality",

xlim = c(0, 100), ylim = c(10, 30))
points(swiss[, xs[2]], y, pch=16, col=cls[2], cex=2)
points(swiss[, xs[3]], y, pch=17, col=cls[3], cex=2)
legend("bottom", xs, col=cls, pch=15:17, pt.cex=2)

47 | 243

Ugly plots (1/5) - colour abuse

. Business Results Gained from Digital Initiatives
The Value of Omnichannel

senvice delivery

Credit: Towards Data Science.

Empirical research in Econ+Fin+Mgmt using R. © Andrei V. Kostyrka, Université du Luxembourg, 2023 48 I 2"‘3

https://towardsdatascience.com/how-to-create-a-non-ugly-figure-a-recipe-for-python-data-visualization-3793fde29e79

Ugly plots (1/5) - colour abuse

Nevada ®
Arizona
Utah
idaho 30%
Texas =
North Carolina SRS H °
T
[l 3o
I DO 20% L]
I e ° Py
re B S
jarrrraraae) 3 ®
Yoo e o =4
(2 E—— 28 ® o ©
Q
] 2R 10% 2 » °
— = P ° >
——
e E— °°® o
—
— 0% ®
—
| ——— 10° 3x10° 10" 3x10
| — population size in 2000
— @ Alabama @ Kentucky North Dakota
= ® Alaska ® Louisiana Ohio
N N E— @ Aizona ® Maine Oklahoma
o
DR, @ Arkansas @® Maryland Oregon
Distictof isconsn = @ California @® Massachusetts Pennsylvania
Connecticu: @ Colorado @® Michigan Rhode Island
North Dakota I
New Jersey N @ Connecticut @ Minnesota South Carolina
Mlssﬁﬂs\pp\ — @ Delaware @ Mississippi South Dakota
lowa - ® District of Columbia @ Missouri Tennessee
Pennsyvania I ® Florida Montana Texas
Massachusetts - ® Georgia ® Nebraska Utah
t -

We;ls{%‘;’,‘a @ Hawaii ® Nevada Vermont
New York @ Idaho @® New Hampshire Virginia
Louisiana @ \lliinois ® New Jersey Washington

R*“’&ft“‘ig’a‘ﬁ ® indiana ® New Mexico West Virginia

0% 10% 20% 30% ® lowa @ New York Wisconsin
® Kansas @ North Carolina Wyoming

population growth, 2000 to 2010

Credit: Claus Wilke.

Empirical research in Econ+Fin+Mgmt using R. © Andrei V. Kostyrka, Université du Luxembourg, 2023 48 I 2"‘3

https://clauswilke.com/dataviz/color-pitfalls.html

Ugly plots (2/5) - illegible representation

Huw Muc“ I]U vuu SPENI] UN ACpG IsIandHl-le)rl‘?;::r(!:eat:zI::ion Profile of
GROCERIES EVERY WEEK? N .

22% unoer $100
ABOUT $100
399% 10070 s200

10% seoutos300

3 2

Credit: Old Streets Solutions.

Empirical research in Econ+Fin+Mgmt using R. © Andrei V. Kostyrka, Université du Luxembourg, 2023 49 I 2"‘3

https://www.oldstreetsolutions.com/good-and-bad-data-visualization

Ugly plots (3/5) - colour misuse

Reported Cases @ 1t0100 @ 10,001 or more
@ None @ 10110 1,000
Sl @ 1001105000 @ 500110 10,000

The Woodlands area age breakdowns
2015-19 (2019 American Community Survey 5-
year estimates)

9015 §20-30 §4059 @60-79 @80+

The Woodlands Shenandoah Oak Ridge North

aEese-me
Source: U.S. Census Bureau

Old Streets Solutions

50 /243

https://www.oldstreetsolutions.com/good-and-bad-data-visualization

Ugly plots (4/5) - wrong inputs / labels

CORONAVIRUS &
Us "o

FLORIDA CONFIRMED CASES

3,207

42% 3822 2,928

3,494
2089

Small Companies
(<50 employees)

Old Streets Solutions

51/ 243

https://www.oldstreetsolutions.com/good-and-bad-data-visualization

Ugly plots (5/5) - WAT

Amercias

a
=
o
o
o
o
-
a

Credit: Delivering Data Analytics.

Empirical research in Econ+Fin+Mgmt using R. © Andrei V. Kostyrka, Université du Luxembourg, 2023 52 I 2"‘3

https://deliveringdataanalytics.com/confessions-of-a-dashboard-designer-how-to-avoid-ugly-data-visualizations/

Ugly plots (5/5) - WAT

1,200 France - police enforca ::5: - sfill Hlying inhrrl:u\
Tockdown two weeks Thpr o :quz:::;
P b -
% before April 20d waeks befora Apeil 5th
3
> 1,000
E
5
o5
o
o Full UK
v lockdown
wn o
Tt 800 bagan two
== wesks befare
<32 April Tth
w5
a) ©
u 5
(s} "_E 600
iy
a8
e .
=S= £k UsA
Zg 400 UK - schools, pubs £ Fromce
w1 and restauranis from
o= Italy - most of aarthern laly fwo wooks befare Spain
g covared by quorantine bwo OF gy, Friday 3rd April

2= wasks bafora Sundoy 22nd £ taly
W5 March 2020 :
E 200 : E= 3

Germany - lockdown

introducad in Bavaria fwo 3 o & Welee

waeks befors April Ird £ China

: % Germany

Q
(200) (150} (100} {50} 0 50 100 150 200 250 300
INCREASE OR DECREASE IN DEATHS PER DAY

[smoothed rate of chonge from the date before ta the date after date shown)
DannyDerling.org. llustration by Kirstan McClura @orpheuscat

Credit: Old Streets Solutions.

Empirical research in Econ+Fin+Mgmt using R. © Andrei V. Kostyrka, Université du Luxembourg, 2023 52 I 2"‘3

https://www.oldstreetsolutions.com/good-and-bad-data-visualization

Any questions on raster and digital images?

Plots, parameters, and devices

Five pillars of base graphics

Anything can be drawn with these 5 elements.

1. Points
2. Lines

3.
4
5

Polygons

. Text
. Layout parameters

53 /243

Caveat: sacrifices for comprehensibility

In these plots, the effects of changing specific parameters
will be shown.

However, certain extra parameters not shown in the code
are used to change the layout to make these plots look
better in the slides.

« The code blocks showcase the effect of changing a
certain parameter on the final look

- To reproduce the plots exactly (with margins,
prettifications, omissions etc.), see session05.R

54 [243

Transform data and plot

A family of functions automatically pre-process data to
create something plottable:

 boxplot() - box-and-whisker plot, barplot() -
barplot

« Compute and return points used to produce the bars
- density() - density, hist() - histogram

« acf() - auto-correlation, hclust() — dendrograms,
ecdf () — empirical cumulative distribution, prcomp() -
principal-component decimposition, st1() -
season-trend LOESS decomposition

55 [243

Workhorse: plot()

Almost every plot starts with calling plot(...)
« For numeric vectors x and y, plot(x, y) produces a
scatter plot (with points) by default (no recycling)

- Optional arguments change the style of plot()

If class(a) == "XYZ" and the method plot.XYZ() is
defined, plot(a) will produce a special kind of plot
pre-defined by the developer

+ To see how it is achieved, run pkgname: : :plot.XYZ
« Copy and change the definition for full customisability
In an interactive environment (e. g. RStudio), plot ()
starts a new plot and overwrites the old one

« This button goes to the previous interactive plot:

Files Plots Packages

@ wp | 2 Zoom |$HExport ~ | X
—

56 / 243

Basic scatter plot

Given two vectors of the same length, produce a simple

scatter plot:

X <- 1:10

y <- ¢(0.3, -0.1,
-1.7, 0.5,

-2.1, -0.8, 0.1,

plot(x, y)

0
-0.
1

0 O~ N

Looks ugly? No problem, we can make it much prettier with

a couple of custom parameters.

57/ 243

Changing the box type

The argument bty = "o" defines the box type around the
plot. Use bty = "n" to remove it. Other types exist:

btys <- C(“OH, "1", n7u' "C", ”U", u]n’ nnn)
for (b in btys) plot(x, y, bty = b)
bty =0 bty =1 bty =7 bty=c
0 o 0 O
1 1 1 1
Ofooo ° S O*Ooo °© o 0 Ooo ° S O*Ooo °© o
-1 ° o -1 4 ° o -1 © o -1 ° o
| o o | o _ o o | o
Lt P2 r——7%—7 7?7 1% 2
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
bty =u bty =] bty =n
O] - Q9 o
1 1 1
0 Ooo °© o 0 Ooo ° o 0 Ooo ° o
-1 ° o -1 ° o -1 ° o
-2 ° -2 ° -2 ©
ﬁﬁﬁ_aﬁ I—Tﬁ_{]ﬁ
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Idea behind plot vectorisation

Main concept: the optional arguments of plot() related to
points / lines correspond to the input vectors. The
arguments in the call are vectorised as follows:

X, 72 pch, col,
plot| x = X:2 Y= y:2 pch = PC:/’lz ol = Cc?lz '
X, v, pch, col,

plot() can produce various visuals for all points at once
without any loops / repeated calls: just pass the desired
visual parameters as vectors.

59 [243

Vectors of point parameters

Fuel efficiency (MPG) as a function of horsepower

% Gears Cylinders:
ANRTR "o TN

me6
5 % " e
LA & Non-ush

[T T T T 1
50 100 150 200 250 300

25 30
| J

20

mycols <- rainbow(3, end = 0.6, v = 0.8)
plot(mtcars$hp, mtcars$mpg,

pch = 1 + mtcars$am, # am is 0 or 1
col = mycols[as.factor(mtcars$cyl)],
cex = (mtcars$gear-3)*2+1)

60 / 243

Plotting character

In R, there are 21 distinct characters (0-20) in the plotting
font. They are selected via pch = <integer>.

plot(0:20, 0:20, pch = 0:20)

8 7 . 1520.
13 ..
3 2 N
101183(8j
9 - 78&92}
o sk
4 Svlz
n - 2 3><<>
0o LAT
DO
[T T 1
5 10 15 20

61/ 243

Plotting character size

To set a different plotting character size, use
cex = <positive number>; default = 1.

plot(2:10/2, 2:10/2, cex = 2:10/2)

Y
@
“ @@
® ®
, ®
N 1.50
. O
— - (@]
[I I I |
1 2 3 4 5

62/ 243

Point size for importance

d <- data.frame(
Countr\y = C(IlDEII' IIFRII, IILUII’ IILTII, IINLIl)’

edu3 = c(31.5, 38.2, 49.5, 44, 41.4),
gdppc = c(66, 59, 142, 49, 73),
pop = c(83191, 67287, 639, 2786, 17501)
)
par(mar = c(5, 4, 0, 0)+.1) 140 .

psize <- log(d$pop) - 5 % 120

psize = 6.3 6.1 1.5 2.9 4.8 g

plot(dedu, dgdppc, ' "
col = "#00000088", g 80 DE "
pch = 16, t ® .. .
cex = psize) # <== KEY LINE °© ®

40

text(x = d$edu,
y = d$gdppc + psize + 8, 25 30 s 40 45 50 55
labels = d$country)

% pop. with tertiary education
The point radius is proportional to log(population)

63 /243

Making scatter plot circles thicker

Since the hollow circles, squares, and other plotting
characters consist of lines, those lines can be made thicker
if Twd is changed.

It may seem that points() does not do anything with line
parameters, but specifically lwd changes the line thickness
in the plotting character:

plot(rep(®, 5), pch = 1:5, cex = 2, lwd = 1:5)

64 [243

Plotting colours

A colour in R is defined as a character vector starting with #
followed by the hexadecimal value (also known as HTML
colour). Use 6 characters for solid colours and 8 characters
for semi-transparent ones.

* Red, green, blue: "#FF0000", "#00FFOO", "#0000FF"

« Dark red: "#880000"

- Light blue: "#880000"

 Semi-transparent dark green: "#00008888"

 Default: full opaqueness; 880000 = 880000FF

Names "red", "blue" etc. are also supported.

65 / 243

Colour palettes

« rainbow(10, v=0.8, start=0.1, end=0.6) creates a
uniform rainbow progression that starts at 0.1 and ends
at 0.6 (0 = red, 0.2 = yellow, 0.4 = green, 0.6 = blue, 0.8 =
purple), with lightness value 0.8 (1 = brightest)

« heat.colors(n, alpha) create a red-yellow-white
gradient (good for heat maps)

« terrain.colors(n), topo.colors(n), cm.colors(n)
return green-yellow-beige, blue-green-yellow, and
azure-white-pink gradients respectively

« hcl.colors(n, palette = "XYZ") returns colours
from a built-in palette

See ?hcl.colors; hcl.pals() produces a list of palettes.
66 / 243

Colour examples

rainbow() heat.colors()
[]
(
[]
. .
{
(]
° o ®
terrain.colors() topo.colors()
{
(] []
o ® o ®
cm.colors() hcl.colors()
(]
o *®
. .
. .

67/ 243

Adding transparency to colours

Since colours are characters, adding transparency to them is
as easy as pasting 2 more characters for the alpha channel.

mycols <- c("#845ec2", "#0081lcf", "#008f7a")
mycolsl <- pasteO@(mycols, "AA")

mycols2 <- paste@(mycols, "44")

plot(1:3, rep(1, 3), pch = 16, col = mycols)
points(1:3, rep(1.3, 3), pch = 16, col = mycolsl)
points(1:3, rep(1.6, 3), pch = 16, col = mycols2)

68 [243

Generate good palettes

Search ‘HTML palettes’ or ‘HTML colour picker’ online to get
good colours!

« Adobe colour wheel

« mycolor.space

» coolors.co

Test the palettes for accessibility (if possible).

69 [243

https://color.adobe.com/create/color-wheel
https://mycolor.space
https://coolors.co

Built-in numeric colours

Built-in colours 1-8 are simply integers — they look almost
not too bad:

plot(1:8, 1:8, col = 1:8, pch = 16)
© i ®
<] ®
~ F
°
[T T T T T T 1
1 2 3 4 5 6 7 8

70 / 243

Adding things to plots

A plot might contain multiple lines, points etc.

To add elements:

« points(x, y, ...) adds more points

« lines(x, y, ...) adds lines going through the
indicated points

- text(x, y, labels ...) adds text labels at the given
coordinates

These command accept some common and some distinct
elements.

71/ 243

Changing plot type

« plot(x, y, type = "1", ...) createsa line plot

« plot(x, y, type = "b", ...) createsa
line-and-point plot

72 [243

Creating a line plot

plot(x, y, type = "1", ...) connects the points with
a line:
plot(x, y, type = "1")
‘I\‘ [T T T 1
2 4 6 8 10

73/ 243

Combining lines and dots

Invoke points() and lines() to gradually fill the plot with
more elements.

plot(x, y, type = "1")
points(1:10, rep(0.5, 10), pch = 16, col = "red")
lines(c(3, 5, 7), c(-1, 0.8, -1.5), col = 4)

1

-2 -1 0

74 [243

Line parameters

« lwd = <num> modifies the line thickness (default: 1)
« 1ty = <num> modifies the line stroke (1: solid, 2: dash,
3: dotted, 4: dot-dash)

plot(x, y, type = "1", bty = "n")
lines(c(3,5,7), c(-1, 0.8, -1.5), col=4, lwd=4, 1lty=2)
lines(c(1,2,5), c(1, -0.8, -1), col=2, lwd=2, 1lty=3)

0

-2 -1

75/ 243

Plot limits

The arguments x1im and ylim of plot() are length-2
vectors defining the horizontal and vertical plotting range.

Default: xlim = range(x), ylim = range(y).
Tip: if possible, include zero: it gives the perspective.

plot(1:2, c(52, 48), pch = 15, col = c(2, 4),

xlim = ¢(0.7, 2.3), ylim = c(46, 54), cex = 4)
text(1:2, c(52, 48), c("Yes", "No"), font = 2)
Right: the same, BUT ylim = c(0, 60)

Brexit: leave the EU? Brexit: leave the EU?
54 60
0 &
2 [%0 No
50 30
20
48 . 10
46 e : 0

76 | 243

Tip: create contours

If there are many points, create a thick white outline to
make the line stand out. Exaggerated example:

set.seed(1); x1 <- runif(400); y1 <- runif(400)
plot(x1l, y1, type = "1", bty = "n", col = "#000000")
lines(c(.1,.4,.7), c(.2,.8,.3), lwd = 8, col = "white")
lines(c(.1,.4,.7), c(.2,.8,.3), lwd = 4, 1ty = 2)

0.8

0.4

0.0

77 [243

Plot any list withxand y

If a list contains named components x and y, R will attempt
to automatically plot plot(a) as plot(ax, ay).

a <- list(x = 1:10, y = 1:10, s = "Thing")
plot(a)

This is why many popular functions return lists containing x
and y components:

a <- density(1:10)
head(cbind(ax, ay))

#> [,1] [,2]
#> -4.157859 0.0003034332
#> -4.120059 0.0003245074
#> ..

78 [243

Density plots and rugs

Very popular are density plots: visualise a smooth
estimated distribution of your data. Add rugs to show the
original values. Remove the title with main = "".
set.seed(1); xs <- rnorm(100)

dl <- density(xs)

p'LO't(dl, bty = "n"’ main = IIII)
rug(xs)

0.4

0.2

0.0

79 [243

Adding density lines

d2 <- density(xs, bw=0.1); d3 <- density(xs, bw=1)
If one needs two density plots, calling plot(d1) and
plot(d2) will cause the new plot to overwrite the old one.

Add lines by examining str(d1) and noting the names(d1)
contains elements named "x" and "y".

plot(dl, bty = "n", main = ""); rug(xs)
lines(d2$x, d2$y, col = 2, 1ty = 2, lwd
lines(d3$x, d3$y, col = 4, 1ty = 4, lwd

<
<)

2)
2)

\

0.2

0.0

80/ 243

Starting with a clean slate

plot.new() opens an empty canvas: (1) no points, (2) both
ranges [0, 1], (3) no box, (3) no axes, (5) no axis labels:

plot(NULL, NULL, plot.new()
xlim = 0:1, ylim = 0:1, # Gives
bty = "n", < # the same
xaxt = "n", yaxt = "n", # blank
xlab = "", ylab = "") # canvas

points(0:5/5, 0:5/5)
text(0.5, 0.5, "Hi") °

[¢]

Hi ©

o

However, the solution in the left column must be used if a
custom plotting range — x1im and ylim - is necessary.

81/243

Preventing clipping with ranges

In the example above, the red density (d2, with the smallest
bandwidth) was partially clipped because ylim for this plot
was computed for d1.

It is a good idea to compute the limits in advance if multiple
objects are to be plotted. Note that
range(x1, x2) = range(range(x1), range(x2)).

An empty plot with x = NULL andy = NULL requires the
mandatory ranges.

Tip: for multi-element plots, combine them into the list and
(Ls)apply range ().

82 /243

No-hardcoded-ranges example

bws <- c(0.1, 0.3, 0.9)
d.list <- lapply(bws, \(b) density(xs, bw = b))
xL <- range(sapply(d.list, \(d) range(d$x)))
yl <- range(0, sapply(d.list, \(d) range(d$y)))
plot(NULL, NULL, xlim = x1, ylim = y1, bty = "n")
mycols <- rainbow(3, end = 0.6, v = 0.7)
1tys <- c(1, 2, 4)
for (1 in 1:3)
lines(d.list[[1]], col = mycols[i], 1ty = ltys[i])

83 /243

Saving graphics

R features devices that can be written to.

(On Linux, everything is a file - a device is a file, too.)

To save graphics to an external PDF or PNG file,

1. Open a device with the desired parameters and the file
path

2. Run all the plotting command
3. Close the device

84 [243

How to save a plot to PDFinR

X <-y <- 1:20

pdf("test.pdf", width = 5, height = 3)
plot(x, y)

dev.off() # Finalise writing the file

Default width and height units for PDF: inches.
85/ 243

Saving in other formats

« PNG: use the cairo device for smooth plots (default
Windows plots look jagged). Width and height: pixels.
png("test.png", width = 800, height = 480)

Plotting commands
dev.off()

« PDF with full Unicode character support. Width and
height: inches.
cairo_pdf("test.pdf", width = 8, height = 5)

« TIFF: turn on lossless compression to avoid having huge
files. Width and height: pixels.

tiff("test.tif", compress = "lzw",
width = 800, height = 480)

At the end: always dev.off ().
86 /243

Troubleshooting: nothings plots / updates

If png(), pdf (), or something similar is used to write to an
external device, then, the device must be closed so that the
plot window starts refreshing again.

If plotting commands do not show any new plots or
additions to the plots, do not panic. Some device is open
and is being written to instead of RStudio GD.

Solution: if plotting stopped working, run dev.off()
multiple times to close all graphics devices (until ‘cannot
shut down device 1 appears).

87/ 243

RStudio tip: quick-and-dirty plot export

The plot panel allows one to open a plot in full screen, or
copy it, or export.

The legend or text spacing may be broken after manual
rescaling, though.
88 /243

Image resolution

Raster images come in pixels. When transferred to screens
or paper, the density of pixels on the physical medium (how
many fit into 1 inch) is measured in DPI (dots per inch).

A source image printed at 300 DPI will be 2x smaller than
the same one printed at 150 DPI.

Changing the DPI of a digital will only change the size of its
physical output, but nothing in its screen representation.

Convert centimetres at desired DPI into pixels:
A4 paper (21 x 29.7 cm) @ 300 DPI =
(21/2.54 - 300) x (29.7/2.54 - 300) = 2480 x 3508 pixels

Without physical reference units, DPI is meaningless.
89 /243

Creating files with specified resolution

Sometimes, journals require PNG/TIFF images with
resolution X DPI (usually 300 or 600).

Suppose that the text area is 12 cm wide and there 2 plots
to be placed side-by-side (5.7 cm each) and the desired W:H
ratio is 3:2.

2.54 cms in an inch. We use inches because DPI is universal,
whereas dots-per-cm is not.

90/ 243

Example: using DPI to create PNG

w <- 5.7 / 2.54 # Inches
png("sB5-test-res.png",
width = w, height = w/3%2,
units = "in", res = 300,
pointsize = 10, type = "cairo")
par(mar = c(2, 2, 0, 0)+.1)
We talk about this par later
plot(x = 1:20, y = 1:20,

pch = 1:20, cex = 1,

bty - unn' main - nn,

X'Lab - ||||’ y'Lab - ||||)
dev.off()

5 10 15 20

91/ 243

Troubleshooting: wrong TIFF resolution

Sometimes, on Mac, if tiff() is requested to write an
image at high DPI, the output dimensions may be correct,
but the DPI in the file properties can be wrong (72 DPI).

Reason: quirks of X11, cairo, and quartz device
detection / selection.

Foolproof solution: call ImageMagick to fix any broken
resolution! Process multiple files at once:

fn <- c("Figl.tiff", "Fig2.tiff")
for (v in fn) {

e <- pasteO@("convert ", v, " -density 300
-compress LZW -verbose ",
gsub("\\.tiff$", "-opt.tiff", v))

print(e); system(e)}
92/ 243

Setting plot margins

par() is a flexible function that can set many graphical
parameters. Call par() before any plot() or similar calls.

The most useful one is plot margins (a length-4 numeric
vector). They go in this order: bottom, left, top, right.

Default value: c(5, 4, 4, 2) + 0.1.

« To plot axis + marks + axis name, use 4.1; for axis + marks,
use 2.1; to plot nothing, use 0.1; if
plot(..., sub = "Subtitle") is called, use 5.1

- Top: to plot the main title, use 2.1 (otherwise 0.1)

93 /243

Plot margins example

Test plot
Test plot °
© mar=c(4,4,2,0) o °
> o v & °
@ oi mar=c(5,44,9) © ° 5 o °
o o © s < o
= o -4 0 o
o o
o]
2 4 6 8 10 I T T T 1
2 4 6 8 10
Power
Visual proof: money = power Power
1Ee5L piut o
Test plot - mar=c(0,0,0,0) o
9 o
= mar=c(2,2,2,0) o® o
© o o
o
© o © o
o o
o]
o < o]
o o
o
T T T T 1 o
2 4 6 8 10 o

NB: even though zero margins were requested at times, the
extra elements are still visible! Remove them with

main = "",xaxt = "n", xlab = "" etc.
94 [243

Plot aspect ratio

A plot is bounded by x1im and ylim, and the result is
produced on a canvas of fixed size (sans the margins). As a
result, 1 cm or pixel in the horizontal direction may contain
more or fewer units than 1 cm in the vertical direction.

To force an aspect ratio, use plot(..., asp = 1) (or
other number) - compare the axis ranges and the 45° line:
plot(1:10, (1:108)%2) plot(1:10, (1:18)*2, plot(1:10, (1:10)*2,
abline(0, 1, 1ty=3) asp = 1) asp = 0.8)
abline(0, 1, 1ty=3) abline(0, 1, 1ty=3)

95 [243

Customising axes

To change axis parameters, remove the respective axis by
calling plot(xaxt = "n") (or yaxt = "n")and draw a
new one with customisation,

axis(1) is a command that puts an axis at the bottom,
axis(2) on the left side, axis(3) and axis(4) on the top
| right side respectively.

axis(1, at=c(1,4,7), labels=c("L", "M", "H"))
places the horizontal axis at the bottom with three marks
and three custom labels.

Label orientation: las=1 creates horizontal labels, 1as=2
rotates them by 90°. Do not break the reader’s neck!

96 [243

Separation between axis and labels

The notation is a bit confusing:

e axis(..., cex.axis = 0.8) or
plot(..., cex.axis = 0.8) scales only the labels

« axis(..., col.axis = "red") or
plot(..., col.axis = "red") changes only the label
colour

« axis(..., col = "red") changes only the axis line
colour

97 | 243

Axis customisation example

X <- 1:10 # Full unabridged code, nothing simplified
y <- ¢(0.3, -0.1, -0.2, -1.7, 0.5, -0.6, -2.1, -0.8, 0.1, 1.8)
pdf("s05-plot-axis.pdf", 5, 2)
par(mar = c(2, 5, 0, 0)+.1) # Large left margin for horiz. text
plot(x, y, type = "1", bty = "n", xaxt = "n", yaxt = "n",

xlim = ¢(0,13), ylim = range(y) - 0.2xc(1,-1), xLlab="", ylab="")
axis(1, at = seq(0, 12, 3),labels = c("Easy", "Medium",

"Hard", "Ultra-violence", "Nightmare"), las = 1,

cex.axis = 0.75, col.axis = "blue")
axis(2, -1:1, c("Low", "Medium", "High"), las = 1, col ="red")
dev.off()

High
Medium

Low

Easy Medium Hard Ultra-violence Nightmare

98 / 243

Logarithmic axes

If the data (1) are positive and (2) span several orders of
magnitude, using logarithms helps showing exponential
changes on a linear scale. plot(..., log = "xy") for
both log axes, or Llog = "x" [Llog = "y" for only one.

X <- 107(-1:3)
y <- c(2, 1leb6, 50, 8000, 5e4)

plot(x, y)
plot(x, v,

le+06
8e+05
6e+05
4e+05
2e+05
0e+00

'Log = "Xy“)

o

o

o

o)
[
0

T
200

T

T
600

T

1
1000

le+06
1e+05
le+04
1le+03
le+02
le+01

o

o

[
le-01

T T
le+01

T 1
le+03

99 / 243

Adding orthogonal lines

« Grids can be ugly, redundant, and noisy

« Grids can be useful in certain cases to spot tiny
deviations

abline(...) draws many types of lines:

«v = c(x1, x2, ...) putsvertical lines at x,, x,, ...
* h = c(yl, y2, ...) putshorizontal linesaty,,y,, ..
«a =0.5, b = 1(both are necessary) draws y = a+ bx

100 / 243

abline() styles are vectorised

For a vector of vertical or horizontal positions, abline()
can use a vector of colours, widths, or types to produce
multiple styles at once.

NB. Arguments a and b for sloped lines are not vectorised.
set.seed(1)

X <- rnorm(10); y <- rnorm(10) I .l .
plot(x, y, pch = 16) . . §°'|
abline(v = seq(-0.5, 1, 0.5), ° e .

col = rainbow(4, TR A SRR S ! ,,,,,,,,

end = 0.6, v = 0.8), N L

wd = 1:4, 1ty = 1:4) ' — "
abline(h = -2:1, 1ty = 1:2) 05 00 05 10 15
1ty is recycled 2 to 4

101/ 243

Prepare DFs for non-vectorised lines

Multiple sloped lines in various styles from 1 DF in a loop:

ab <- data.frame(a = ¢c(-0.3, 0, 0.6, -1),

b =c(-1, 0.1, 1, 0.3), 1ty = 1:4, 1lwd = 1:4,

col = c("red", "blue", "purple", "darkgreen"))
plot(x, y, bty = "n", xlab = "", ylab = "", pch = 16)
for (i in 1:nrow(ab))

abline(a = ab[i,"a"], b = ab[i,"b"], # With $ or ""

1ty = ab$lty[il, lwd = ab$lwd[i], col = ab$col[i])

102/ 243

Primary and secondary grid

Recall Session 4: we used ‘round’ numbers to put solid grid
lines, and added several faint lines in between. If the
number of elements is too high to allow convenient
vectorisation, repetition leads to more readable code:

vl <- seq(0, 12, 4); v2 <- setdiff(0:13, vi)

hl <- c(5, 10); h2 <- setdiff(0:10, hl)

vl, hl = coarse grids, v2, h2 = fine grids

cs <- c("#0OOOBOOAA", "#00000088")

plot(NULL, NULL, xlim = c(0, 13), ylim = c(0, 10),
bty = "n", xlab = "Quarter", ylab = "Rate")

abline(v = v1, col = cs[1], 1ty = 2)

abline(v = v2, col = cs[2], 1ty = 3)

abline(h = ¢(0, h1), 1ty = c(1, 2, 2),
col = c("black", cs[1]))

abline(h = h2, col = cs[2], 1ty = 3)

103 / 243

Double grid

10

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Rate

Quarter

The grid must not obstruct the plotted object. Resist the
temptation to put a grid on everything.

Tip: zero lines (x = 0, y = 0) + axis labels are usually enough.
104 / 243

Polygons

polygon(x, y, ...) addsashaded area defined by the
shape formed by the points (x, y).

set.seed(1); xs <- rnorm(100)

dl <- density(xs)

plot(dl, bty = "n", yaxt = "n")

polygon(d1$x[c(1:200, 200)]1, c(di$y[1:200], 0),
border = "red", col = "#00000022")

105/ 243

Text

« Same syntax as with points()

« Adjust the placement with pos = i: 1= bottom, 2 = left,
3 =top, & = right

+ Rotate text with srt = <angle> in degrees

| Q0.5%

plot(dl)

xs <- gnorm(c(0.005, 0.05))

abline(v = xs, 1ty = 2)

text(xs, c(.4, .3), cex = 0.9,
c("QO0.5%", "Q5%"), pos = 4)

106 / 243

Simple formulae with expression()

Put complex formulae in the article text, use the simplest
notation in graphs.

expression() supports simple formula. Run
demo(plotmath) for the comprehensive demonstration.

- x; > x[i], x% - x"{alpha * beta}
« Var X -» Var ~ italic(X),a=b — a ==
- 6, > tilde(theta)[1], Cov — widehat(Cov)

107 / 243

Adjusting text position

Apart from pos = i, there is a more flexible way to adjust
the text position: text(..., adj = c(a, b)).
« Default: adj = c(0.5, 0.5) centres the text
 a<0.5 moves the text to the right, a>0.5 - left
 b<0.5 shifts the text to the top, b>0.5 - bottom

0.6 g -2
0.2 e)
_ pos = 4
02 adj = c(1, 1P
-0.6

-1.0 -0.5 0.0 0.5
108 / 243

Legend

A legend clarifies the notation by creating a rectangle with
information inside the plotting region.

- x: position (character): "topright", "bottom"

« legend: character vector

 pch, lty, col, lwd, cex: styles to show
 Provide pch 16 for filled dots
+ Provide lwd 2 for lines

* box.col = "#FFFFFF88" +bg = "#FFFFFF88" to make
it semi-opaque, bty = "n" to remove the box

- cex changes label sizes, pt.cex changes point sizes

Check the help: the amount of customisations is
overwhelming. A legible legend is essential for publications.
109 / 243

Legend code

Recall this example from earlier:

par(mar = c(4, 4, 0, 0)+.1)
y <- swiss$Infant.Mortality
xs <- c("Education", "Agriculture", "Catholic")
cls <- c("darkorange", "darkgreen", "navy")
plot(swiss[, xs[11], v,
pch = 15, col = cls[1], cex = 2, bty = "n",
xlab = "Explanatory variable",
ylab = "Infant Mortality",
x1im = c(0, 100), ylim = c(10, 30))
points(swiss[, xs[2]1, y, pch=16, col=cls[2], cex=2)
points(swiss[, xs[31], y, pch=17, col=cls[3], cex=2)

legend("right", xs, col=cls, pch=15:17, pt.cex=2,
box.col = "#FFOOG0", bg = "#FFFFFFEL1",
title = "Expl. var:")

110/ 243

Plot with a legend (ugly example)

o _
o
>\ p—
£ “ o %’. Expl. var:
£ 000 .
S o | Ay o Education
> [) Ach w @ Agriculture
C y
8 A) Catholic
= 0 _| .
- —
o A o
| T T T T |
0 20 40 60 80 100

Explanatory variable

111/ 243

General de-cluttering

Drop the box (bty = "n")

« Drop the legend box; make the legend background white,
maybe slightly transparent

- Drop the axis names for plots in papers (xlab = "",

ylab = "" or make them minimalistic)

« Write in human language: ‘This plot shows the dependence

of labour income (vertical axis) on age (horizontal axis)’

« Orient the value labels (Las = 1) to save many necks
Drop the plot titles in papers (main = ""), add the
caption in the document

- par(mar = c(2, 2, 0, 8)+.1) seems appropriate

for axes and tick labels
Drop the vertical axis for densities and histograms
- By definition, they integrate / add up to 1

112/ 243

Automating clean default settings

« Functions are useful in automating customisation

- Ellipses allow passing arguments further

myPlot <- function(..., mar

xlab = "", ylab
par(mar = mar)
plot(..., xlab = xlab, ylab

bty = bty, las = las)}

1:10
I B
o

2 468

plot(1:10, 1:10)

c(2,2,0,0)+.1, bty "n",
n lll main = n ll’ 'Las

= ylab, main = main,
10 o
8 o
6 o
. o

2 o

myPlot(1:10, 1:10)
113/ 243

Any questions on points, lines, text, polygons, or margins?

Popular plots and tips for them

optipng and pngquant in action
Compressing a complex image:

png("vl.png", 512, 512,

pointsize = 18, type = "cairo")
par(mar = c(2, 2, 0, 0)+.1)
set.seed(1)
image(matrix(rnorm(40000), 200))
dev.off()

0.0 0.2 0.4 06 0.8 1.

system("optipng -preserve -05 -out v2.png -clobber vi1.png")
system("pngquant --quality 50-60 --speed 1 --force--output v3.png
- vil.png")

file.size(paste@("v", 1:3, ".png")) shows: original

- 57 kB, optipng — 41 kB, pngquant — 27 kB.

114 [243

Plot types vs. points / lines

Do not worry about setting type = "1" or type = "b".
These 3 snippets return exactly the same output:

plot(1:9, 1:9, type = "b") o
plot(NULL, NULL, ’ o
xlim = c(1, 9), ylim = c(1, 9)) = //
points(1:9, 1:9, type = "b") . /a}
plot(NULL, NULL, , S

xlim = c¢(1, 9), ylim = c(1, 9)) S
lines(1:9, 1:9, type = "b") 2 4 6 8

type = "b" produces both points and lines with gaps;
type = "o" overlays them without gaps. Both points()
and lines() accept the type argument.

115/ 243

Margin text

The labels x1ab and ylab, the main and sub text in plot()
are plotted in the outer margins.

- Change the space between to the axis label
« Change the margin text style

mtext(side = ..., line = ...) does exactly that: puts
the text in the corresponding margin at the requested line.

116 / 243

Visualising matrices

Use image () to show matrices as heat maps.

- By default, with 1 argument, colours a matrix

« image(x, y, z) adjuststhe widths by using x and y as
grid point (x and y must be sorted)

x <- sort(rnorm(100)); xgrid <- seq(-3, 3, 0.05)
d <- outer(x, xgrid, function(x, y) dnorm(5*(x-y)))

Kernel weights.

Evaluaton grid
2 4 0 1 2 3

image(d) image(x, xgrid, d)
117/ 243

Changing image visuals

Custom palettes can be supplied as colours (smallest value
=15t largest = last colour, intermediate = uniform ramp).
More colours = smoother transitions.

For positive matrices spanning multiple orders of
magnitude, image (Log(d)) might look clearer. image (d”"2)
or image(sqrt(d)) might be more informative about the
function shape - try and experiment.

image(d, col = image(d, col = image(d, col = image(log(d),

rainbow(50, rainbow(5, hcl.colors(50, col =
end = 0.6)) end = 0.6)) "viridis")) hcl.colors(50,

"vipidis"))

118 / 243

Pixel-perfect large matrix images

Depending on the number of columns / rows in a matrix,
the image will have more or fewer pixels per row / column.

png::writePNG() write matrices as images with exactly
1 pixel per element - especially useful for sparse / network
matrices. (Clamp the input to [0, 1] first.)

set.seed(1)

m <- matrix(rnorm(30022), 300)

m<- (m - min(m)) / (max(m) - min(m))
m[101:200, 201:250] <- 1

library(png)

writePNG(m, "matrix.png")

The input to writePNG can be a 3D array (for an RGB image)
or 4D array (RGBa).
119 /243

Too much love for Gaussians

Densities are not enough to visualise data distributions,
even with rugs. Often, researchers compare their
distributions with the Gaussian.

NB. Normality is not required for most economic analyses:

» Residuals need not be normal or homoskedastic

« Normality is an emerging property of the output, not
input
« Under general conditions (some finite 4™ moments), in
repeated experiments on similar large data sets coming
from the same DGP, the arg min or arg max of smooth
objective functions that depend on the entire sample
tends to be approximately normally distributed

120/ 243

Visualising distributions

Visualisations of inputs / residual / variable distribution is
useful:

+ Detect discontinuities
+ Detect anomalies and aberrations

Compare the quantiles of one distribution with the
quantiles of a different distribution visually to examing the
closeness.

» Usually, something empirical (the observed X.) are
compared with something theoretical
« If X ~ ./, 0%),and n = 100, then, Xy = Qyuo2) (0.005),
)= Q 4, 029(0.015); in general, Xy = Q oz)(’ 25)

121/ 243

Normal Q-Q plots

qgnorm(x) plots the empirical distribution {X}.; against
the quantiles of a Gaussian with X and 6)2(.

* gqqline(x) adds a straight line through Q, and Q,

« Add a 45° line with abline(0, 1)
set.seed(1); x <- rnorm(100); xx <- c(x, 10)

Normal Q-Q Plot Normal Q-Q Plot
~ 7 °
T " /
3 s 3 /
- 60 g
1 1 T 1 71T 1 | —
-3 -2 -1 0 1 2 3 -5 0 5
Theoretical Quantiles Theoretical Quantiles
ggnorm(x, asp = 1) ggnorm(xx, asp = 1)
qqline(x, col = 2) gqline(xx, col = 2)
abline(0, 1, 1ty = 3) abline(0, 1, 1ty = 3)

122/ 243

Arbitrary Q-Q plot

qgplot () plots the sorted quantiles of two distributions.
Apply the quantile function of the hypothesised distribution

to ppoints(n) that generates the sequence {—i‘g'5}f’ y
i=

Suppose that X ~ exp with rate A = 3.
set.seed(1); x <- rexp(100, rate = 3)

1.0 S
8

1.0 j
0.5 05 /
0.0 - LI A [0.0
0.0 0.5 1.0 15 0.0 05 1.0 15
plot(density(x)) y <- qgexp(ppoints(length(x)), 3)
rug(x) qgplot(x, y, asp = 1)

abline(0, 1, 1ty = 3)
123/ 243

Densities

The function density () computes the kernel density
estimator (KDE) of the input variable.

« To change the bandwidth, use density(x, bw = 0.5)

« To auto-select the bandwidth with the reliable
Sheather-Jones rule, use density(x, bw = "SJ")

« Alternatively, compute b <- bw.SJ(x) and
density(x, bw = b)
« If X contains extreme values, the KDE may look bad
« Try dropping values near the ends:

x1 <- quantile(x, c(0.01, 0.99))
xx <- x[x > x1[1] & x < x1[2]]
plot(density(xx))

- density(x, from = a, to = b) restricts the range

124 [243

Densities for bounded variables

Many economic variables are bounded: wages, population,
capital (X > 0), which is why negative ‘tails’ of the density
estimator are wrong.

Use the bounded KDE from the ks package:

bd <- ks::kde.boundary(x, h = bw.SJ(x),
xmin = 0, xmax = max(x)=*1.05)

o : i |

plot(density(x, bw = "SJ")); rug(x) plot(bd); rug(x)
125/ 243

Importance of density tails

Visual comparison of theoretical densities in finance can be
hard: the rare events (market crashes) have low
probabilities, and linear plots do not show tail behaviour.

Two random variables with mean 0 and variance 1:
1. f, = standard normal

2. f, = skewed Student with 5 DoF and left tail (the left of
the mode) 4 times longer than the right tail

The former decays very quicky (super-exponentially), the
latter decays hyperbolically. Can it be seen?

126 / 243

Visualising logarithmic densities

Solid red
Mean: 0
SD: 1
Skewness: -2.1
Kurtosis: 17.5

library(rugarch) o b
-Fl <- dnopm ':Ee:v%esszo
f2 <- \(x) rugarch:::dsstd(x,

shape = 5, skew = 0.5)

x <- seq(-6, 6, 0.1) s 4 =2 o 2 a4 s
p-LOt(X, 'F:I-(X)) 1e-01 ="
lines(x, f2(x), col = 2) 1e0a

plot(x, f1(x), log = "y") o

lines(x, f2(x), col = 2) o 4 2 o 2 4

In logarithmic axes, f, is concave, f, is quasi-concave; the
asymmetry and tail heaviness of f, is more pronounced.

127/ 243

Text with halo

Before placing text on varicoloured background, create a
halo by plotting identical text in a circle.

Halos around text and lines are the standard
legibility-improving tool in map-making and atlases.

j 3 Oberer
N _Knochenkern
N des Korpers
M PazaHc
4

Unterer
——. Knochenkern
des Korpers

agel

Goal: create a function that allows a different number of
steps, halo colour, and horizontal / vertical spread.

128 / 243

Improved text-halo function

textWithHalo <- function(
X, Yy, labels, col = "black", # Passed to text()
n = 16, col.halo = "#FFFFFFAA", # Halo elements
hscale = 0.01, vscale = NULL, # Halo radii (rel.)
...) { # ... are passed to all text()'s
xlim <- par("usr")[1:2]; ylim <- par("usr")[3:4]
if (is.null(vscale)) vscale <- hscale
angls <- seq(0, 2xpi, length.out = n+1)[-(n+1)]
shifts <- cbind(cos(angls)*hscale*xlim,
sin(angls)*vscale*xylim)
for (i in 1:n) text(x+shifts([i,1], y+shifts[i,2],
labels = labels, col = col.halo, ...)
text(x, y, labels = labels, col = col, ...)
}

par("usr") returns a vector c(x1, xr, yb, yt);
x1im = c(x1, xr),ylim = c(yb, yt).
129 / 243

Text haloing in action

set.seed(1)
plot(runif(200), runif(200), type = "1")
textWithHalo(0.5, 0.5, "Stand out!",

col = 2, font = 2)

1.0
0.8
0.6
0.4

0.2

0.0 —

130/ 243

Loops for complex plots

If there are multiple elements, data sets, groups to be
plotted, do not jump at the problem at once. With 99.9%
probability, a function that will output the plot that you
need with default settings does not exist.

« Prepare the colours, line types, character types etc.
separately

« If there are many similar elements, prepare lists with
plottable numbers

- Add those elements onto the picture

131/ 243

Parallel coordinates plot

In experiments, it is sometimes important to visualise
‘chains’ of characteristics for units, especially is multiple
outcomes were measured / multiple tests carried out.

The survival package has survival: :lung data set on
survival in patients with advanced lung cancer:

- Survival time in days, status (dead / censored)

- Age and sex (1= male, 2 = female)

- ECOG performance score (severity of symptoms),
Karnofsky performance scores

- Calories consumed and weight loss

132/ 243

Preparations for parallel coordinates

d0 <- survival::lung[, -1]

s <- d0$sex # Extract variable for colouring
d0 <- dO[, -which(colnames(dB®) == "sex")]

d <- sapply(dO, scale) # (x - mean) / sd

d[, "status"] <- dO[, "status"] # Restor. 0/1
cs <- c("#1177EEBB", "#EE28COBB")

cs <- c("#1177EEBB", "#EE28COBB") # Colours

« scale(x) returns standardised values: subtracts the
mean and divides by the standard deviation

« Since d is a data frame = a list, sapply() calls
lapply (), computes scale(x) for each variable, gets a

pure list of vectors as returns, and simplifies the output

into a numeric matrix (not a data frame)

- as.data.frame(lapply(d, scale)) would convert
the output list back into a data frame

133 /243

Paral. coord. solution 1: loops (1/2)

Prepare the canvas and human-readable labels based on
the data ranges:

par(mar = c(6.5, 4, 0.5, 0.5)) # More space below
yl <- range(d, na.rm = TRUE)
plot(NULL, NULL, bty = "n", xaxt = "n", xlab = "",
xlim = c(1, ncol(d)), ylim = yl + c(-0.2, 0.2),
ylab "Standardised value")
labs <- c("Surviv. time", "Surv. status", "Age",
"Sympt. svrty", "Doct. hlth. eval", "Pat. hlth. eval",
"Calories cons.", "Weight loss")
axis(1, 1:ncol(d), labels=labs, cex.axis=0.95, las=2)
abline(v 1:ncol(d), col = "#00000033", 1lwd = 2)
abline(h seq(-4, 4, 0.5), col = "#00000022", 1ty = 2)

134 [243

Paral. coord. solution 1: loops (1/2)

-
O
=
o o —
=
g
(]
0
5 ©
O
cC
o
? o

Surviv. time —
Surv. status
Age —
Sympt, svrty —
Doct. hith. eval —
Pat. hith. eval —
Calories cons. —
Weight loss —

We are now ready to add lines for every patient.
135/ 243

Paral. coord. solution 1: loops (2/2)

The full plot is produced by just 1 loop over rows:

for (i in 1:nrow(d)) lines(d[i,], col = cs[s[il])

Add the legend and clarifying overlay text:

legend("topleft", c("Male", "Female"), lwd = 3,
col = cs, bg = "#FFFFFFEE", box.col = NA)

12 <- c("Censored", "Dead")

14 <- c("Asymptomatic", "Symp. but ambul.",

"< 50% bed", "> 50% bed")

textWithHalo(rep(2, 2), sort(unique(d[, "status"1)),
labels = 12, pos = c(1, 3), col.halo = "#FFFFFFCC",
hscale = 0.005, vscale = 0.01)

textWithHalo(rep(4, 2), sort(unique(d[, "ph.ecog"]l)),
labels = 14, cex = 0.9, pos=3, col.halo="#FFFFFFCC",

hscale = 0.005, vscale = 0.01)

136 / 243

Paral. coord. solution 1: loops (2/2)

> 50% bed

Standardised value

Age —

Pat. hith. eval —
Weight loss —

Surv. status —|
Sympt, svrty —

Surviv. time =
Daet. kith. eval —
Calories cons. —

In some fields, such plots are common.
137/ 243

Matrix plots

Writing loops for each line is tedious! Can we plot matrices
without loops?

matplot(x, ...) plots multiple series for each column of
matrix x. It accepts the same styling arguments as plot().

138/ 243

Paral. coord. solution 2: matrix plot

Transpose d and use one command:

#

Same preparations: we need d and s

matplot(t(d),

"

ylim = range(d, na.rm = T) + c(-0.2, 0.2),
type = "1", 1ty = 1, col = cs[s],

bty = "n", xaxt = "n", xlab = "",

ylab = "Standardised value")

Same commands for axes, labels, text etc.

The plot looks identical to the one from Slide 137!

139/ 243

Plotting multiple stock indices

Plots of multiple times series in the same picture are very
popular. The main obstacle to plotting is wildly different
value ranges. Solutions:

X—min x
max Xx—min X
« scale by mean and SD

- scale by robust versions of mean and SD

- median() and mean(x, trim = 0.25) are more
robust location measures
« mad() and IQR() are more robust dispersion measures

« Clamp to [0, 1] via

140 [243

Preparations for multiple stock prices

To prepare multiple stock prices for plotting:
- Download the (adjusted) prices for the selected tickers
for the desired date range

- Create the union of all dates (some values may be
missing) of length n

- Create an NA matrix with n rows and columns
corresponding to the tickers

« For the dates available for each ticker, fill the matching
indices with the price values

141/ 243

Fetching and plotting tickers

The dates are equal for all stocks — we combine the vectors.
Then, all the duty of plotting is done by matplot():

library(tidyquant) # tq_get returns tibbles

tckr <- c("SPY", "NFLX", "AMZN") # Company tickers

d <- as.data.frame(tg_get(tckr, from = "2019-01-01"))
dl <- split(d, d$symbol)

m <- do.call(cbind, lapply(di, "[[", "adjusted"))

matplot(dil[[1]]$date, m, type = "1", 1ty = 1,
bty = "n", lwd = 2, ylab = "", xlab = "")
abline(v = seq(as.Date("2019-01-01"),
as.Date("2024-01-01"), by = "3 months"),
1ty = 2, col = "#00000044")
legend("topleft", border.col = "#FFFFFFOO", col
legend = c("SP500", "Netflix", "Amazon"), lwd

142 [243

Stock price plot - unscaled

700

- SP500

= Netflix
600 Amazon
500 —
400 —
300 M A /

gl

200 —
100 — MMW,\WM

143 [243

Histograms

Produce histograms with hist():

set.seed(1)
r <- rt(1000, df = 4) + 0.2
hist(r‘) T T T T 1

-10 -5 0 5 10

This distribution should be symmetric around 0.2, but the
default breaks make it look skewed. Customise breaks by
supplying their exact locations. It is a good idea to centre a
histogram around the median.

hist(r, breaks = c(min(r),
(-10:10)/2 + median(r),
max(r)))

144 [243

Tweaking histograms

« To add counts, use labels = TRUE

To change the bar fill colour, use col
« Setcol = "#00OOOOOEO" for transparent bars

To change the lines colour, use border

Standard x1im, ylim, bty etc. apply

145 [243

Quirks of histograms

NB. Using breaks = n with an integer n does not return the
expected result (n breaks) because n is used merely a
‘suggestion’ to split the range at ‘pretty’ (round, or multiples
of 2 an 5) values, which cannot be honoured for all n.

hist(r, breaks = 12) # 0Observe no change:
hist(r, breaks = 14) # 0Only 12 breaks

NB. Border width cannot be changed: border is the colour,
lwd changes axis thickness. This is due to the
implementation of rectangles in
graphics:::plot.histogram():

rect(x$breaks[-nB], 0, x$breaks[-1L], y, col = col,
border = border, angle = angle, density = density, 1ty = lty)

146 [243

Useful return from hist()

hist() does not only plot the data. It returns the
information used to construct the plot:

h <- hist(r, col = "#00000000")

str(h)
#> $ breaks
#> $ counts
#> $ density :
#> $ mids

List of 6:

Customise the text position:

textWithHalo(x = h$mids,
y:
h$counts/2),
as.character(h$counts),
col.halo = "#FFFFFFEE", n

pmax (max(h$counts)*0.05,

s num [1:12] -12 -10 -8 -6 -4 -2 ...

cint [1:11] 2 1 1 8 37 340 536

num [1:11] 0.001 6.0005 0.60605 ...

:num [1:11] -11 -9 -7 -5 -3 -1 1 ...

536

|

340
2.1 1.8137 [65l6_1 3
I T T 1

T
-10 -5 0 5 10

147 | 243

12)

Bar plot

A bar plot is an alternative to scatter plots at regular
intervals to compare several numbers.

« Vector names are used as labels

« Use either labels or an axis with a faint grid

« Like hist (), it returns something - the bar midpoints
« plot() customisation arguments apply

This information can be used to add labels:

175

y <- mtcars$hp[1:6]
b <- barplot(y, col = "#00000000", 10 10 110 105

ylim = c(0, max(y)*1.1)) =
text(b, y, as.character(y), pos=3) {]

148 [243

Bar plot orientation

If the names are long, use horiz = TRUE to draw the bars
horizontally; turn the labels with las to avoid neck injuries:

names(y) <- rownames(mtcars)[1:6]

par(mar = c(2, 8, 0, 0)+.1) # Wide left margin
barplot(y, col = "#00000000", horiz = T, las = 1)
abline(v=seq(0,175,25), 1ty=3, col="#00000033")

Valiant |

Hornet Sportabout |

Hornet 4 Drive |

Datsun 710 |

Mazda RX4 Wag |
Mazda RX4 | |

[

0

149 [243

Stacked bar plots

For matrix inputs, barplot returns stacked bars (the
lengths are given by matrix columns).

m <- matrix(c(39,4,1,27,14,0,6,31,58,15,65,14), ncol = 4)
1 <- c("Proteins", "Fats", "Carbs")
dimnames(m)<-1ist(l,c("BUndnerfleisch","Chicken","Nutella", "Walnut"))

cs <- c("#deabce", "#efe63b", "#FFFFFF")
barplot(m, col = cs, ylim = c(0, 100), las = 1)
legend("topleft", 1, fill = cs, bty = "n")

100
s0 - 5 Prene
60 O Carbs
40
20
0
Biindnerfleisch ~ Chicken Nutella Walnut

150 / 243

Grouped bar plots

For ‘unstacked’ grouped bar plots, use beside = TRUE.

NB. Wide bar plots with many columns are hard to read
without horizontal guides.

barplot(m, col = cs, beside = TRUE, las = 1)
abline(h = (1:6)*10, 1ty=3, col = "#00000033")
legend("top", rownames(m), fill = cs, bty = "n")

60

O Proteins
50 O Fats
40 O Carbs
30
20
10
0

Bundnerfleisch Chicken Nutella Walnut

151/ 243

Rectangles

Use rect() to draw arbitrary rectangles. 4 inputs are
needed: bottom left x, bottom left y, top right x, top right y.
border sets the border colour, col sets the filling colour.

<... same as the previous plot ...>
cal <- c(242, 239, 532, 654)
rect(b[1, 1, rep(0, 4) , b[3,], cal/10,
1ty = 2, lwd = 2)
legend("topleft", "kCal/10 g", 1ty=2, lwd=2, bty="n")

60 - - kcCall10g O Proteins
50 O Fats 1~ ~
40 [} Carbs:

- = rt - -
20 1 1 1
10 ! | ! | !
0 - 1 1
Biindnerfleisch Chicken Nutella Walnut

152/ 243

Line segments

To plot multiple straight lines from a sequence of starting
points to a sequence of end points, use segments().
4 inputs are needed: start x, start y, end x, end y.

Conceptually, segments() draws the diagonals of the
rectangles that would have been drawn by rect().

x <- seq(-3, 3, length.out = 51)
y <- x"2/2
plot(x, y, asp = 1)
ii <- 1:(length(x)-26)
segments(x[ii], y[diil],
x[1i+26], y[ii+26],
col = rainbow(25, v = 0.8))

o = N w B

153/ 243

Arrows

arrows () takes 4 inputs: start x, start y, end x, end y - and
draws the same as segments plus added arrow heads.

- code = 1,2, or 3 define if all arrows are facing forwards,
backwards, or both ways

« angle and length define the style of all arrows
x <- ¢(1, 2, 3, 5)
y < c(2, 6, 3, -1) /\
x[2:4], y[2:4],
col = 1:3, lwd = 2, [w w 1 al

NB. code, angle, and length are not vectorised.
myPlot(x, y, pch = 16)
arrows(x[1:3], y[1:3],
angle = 15, length = 0.2) 1 2 3 4 5
154 [243

PORPNWMOTOO®O

Error bars

angle = 90 straightens the arrows, code = 3 makes them
two-ended, like a capital I. Add error bars in this manner:

y <- ¢c(2, 6, 3, 1)

names(y) <- c("Test 1", "Test 2", "Test 3", "Control")
se <- c(0.2, 0.8, 0.5, 0.4)

b <- barplot(y, pch=16, ylim=c(0, 7), yaxt="n")[, 1]
arrows(b, y-se, b, y+se, angle=90, code=3, length=0.1)

T
1
-
1
Test 1 Test 2 Test 3 Control

155 / 243

Arrange multiple plots

It may be inconvenient to produce and arrange multiple
images. Prepare several plots as a matrix with
par(mfrow = c(nRows, nColumns)).

« When outputting to a device, open the device, call
par(mfrow = ...), and then, call the plots

- Each call of plot() or anything that calls it (e. g.
barplot(), hist() but not points()) starts a new plot
in a section of the output device

- Other par() options can be changed between plots

« Change back to par(mfrow = c(1, 1)) after plotting
or call dev.off() (in interactive mode)

Hint: empty panels remaining? Place the legends there.
156 / 243

Custom matrix plot layout from single PDF

pdf ("mfrow.pdf", 6, 3)
par(mfrow = c(2, 3))
vn <- colnames(mtcars)
for (i in 1:6) plot(mtcars[, i:(i+1)],
col = factor(mtcars$cyl), pch = 16,
main = paste®@("X: ", vn[il, ", Y: ", vn[i+1]))
dev.off()

X:mpg, Y: cyl X:cyl, Y: disp X: disp, Y: hp
8
. 400 300
250

6 | cnew 300 . 200

° 150
57 223 i ' 100 o e’ o ©

1

b o T T T T) 50 - = T 1

10 15 20 25 30

N
o
>
~
©

100 200 300 400

X: hp, Y: drat X: drat, Y: wt X:wt, Y: gsec
50 e .
4.5 - 5 229
4 .
404 8 '-‘. 4 . . 20 .-_..’. s,
‘ o .3 18 H
3.5 3 Wi o o L
3.0 - 2 M P 16 - .
r's (3 L]
r T T T T 1 r T T T 1 r T T 1
50 100 200 300 30 35 40 45 50 2 3 4 5

157 / 243

Merging cells in plot matrices

Drawbacks of par(mfrow = ...):

« Fixed equal plot sizes

« Strict grid placement
It is possible to address these issues with Layout() by
defining a table with merged cells and custom row/column

widths and heights via a matrix. Use 0 in the matrix to skip
layout squares.

158 / 243

Custom layout example

pdf("s05-layout-1.pdf", 6, 3)

layout(matrix(c(1, 3, 4, 2, 2, 4), ncol = 2),
widths = ¢(1, 2), heights = c(1, 1.2, 1.5))

for (4 in 1:4) {
plot(NULL, NULL, x1lim

0:1, ylim = 0:1)

text(0.5, 0.5, i, cex = 2, font = 2)

I

dev.off()
E 1 5]
° 00 02 04 06 08 10 : 2
8 g 3 §
° 0.‘0 o‘.z 0.‘4 o‘.e 0.‘5 1‘.0 0.‘0 o‘.z O‘.A o‘s 0.‘5 1.‘0
. 4
° 0.0 02 04 06 08 1‘.0

159 / 243

Densities in margins with layout()

set.seed(1)

X <- rnorm(100)
y <- rexp(100)
dx <- density(x)

dy <- density(y) 0

layout(matrix(c(0, 3, 2, 1),
ncol = 2), widths = c(1, 3),
heights = c(1, 3))

00 05 10 15 20 25 30

par(mar = c(2,2,0,0)+.1) 1°. 00;0% o o

plot(x, y, bty = "n") 1 2 ecBm, oo

par(mar = ¢(0,2,0,0)+.1) 1o oosffiﬁoo o
. ® Oé’m ‘g 00 o

plot(dxx, dxy, type = "1")
par(mar = ¢c(2,0,0,0)+.1) 2 4 0 1 2
plot(-dyy, dyx, type = "1")

160 / 243

Live demonstration: reproducing a plot

Second partial

1
Second|partial 7 = 7 (1+4q)

e @n

First-partial

Ge -/

161/ 243

Reproducing code

pdf("s05-reproduce.pdf", 4.2, 5)
par(mar = c(1, 1, 0, 0)+.1)
plot(NULL, NULL, xlim = c¢(-0.1, 4), ylim = ¢(-0.1, 5), asp = 1,

bty = ||nn’ X-Lab = ||||, y-Lab = ||||, ant = ||n||, xaxt = ||n||)
abline(v = 1:4, h = 1:5, 1ty = 3, col = "#00000088")
arrows(x0 = ¢c(-0.1, 0), y0 = c(0, -.1),

x1 = c(4, 0), yl = ¢(0, 5), angle = 15)

f1 <- function(x) 2.2 + 1xx
f2 <- function(x) (x-3)"2-1
xgrid <- seq(-.1, 4, .1)
lines(xgrid, fi1(xgrid), lwd
lines(xgrid, f2(xgrid), lwd
Finding the intersection
sol <- uniroot(\(x) f1(x) - f2(x), interval = c(0, 2))
p <- c(sol$root, fl(sol$root)) # Intersection point
lines(c(p[21]1, p[21), c(0, p[2]))
lines(c(0, p[1]), c(p[2], p[2]))
text(p[1], 0, expression(q[el), pos = 1)
text(0, pl[2], expression(r[e]l), pos =
text(pl[1], p[2], "(q, P)", adj = c(-0.5, 1))
text(1.6, f2(1.6), "First partial", col = 2, pos = 4)
text(2, f1(2), "Second partial", col = 4, pos = 4)
points(p[1], p[2], pch = 16)
dev.off()

4)
2)

2, col
2, col

162 [243

Any questions on the common plot types?

Summarising and aggregating data

aggregate: apply a function by group

To compute a statistic by group, one can invoke
aggregate() in one of the two ways:

aggregate(formula, data = d, FUN = myFun)
aggregate(d$varl, by = d$var2, FUN = myFun)

The first relies on the formula interface (we shall apply
formulae in Session 7). The second one simply specifies the
variable(s) to aggregate, the list of identifiers to aggregate
by, and the function.

One may get by without dplyr or data.table most of the
time because aggregate() is so powerful!

163 / 243

One variable, one aggregate statistic

Compute average fuel efficiency by cylinder count.
NB. A single grouping variable must be wrapped into a list.

d <- mtcars

al <- aggregate(mpg ~ cyl, d, mean)

a2 <- aggregate(d$mpg, 1list(d$cyl), mean)
aggregate(dmpg, dcyl, mean) # Error

The returned data frames al and a2 are almost identical;
the formula interface preserves names, whereas aggregating
an unnamed isolated vector by a list resulted in this:

colnames(al) # cyl, mpg
colnames(a2) # Group.1, x

164 [243

Multiple group variables

« Interact the variables in the formula by ‘+

« Use list(varl, var2,

Data frames of grouping variables are lists:

d <- mtcars

aggregate(mpg ~ cyl + am, mtcars, mean)
aggregate(d$mpg, d[, c("cyl", "am")], mean)

#> cyl am

#>
#>
#>
#>
#>
#>

o O N 00 On N

RRROOO

mpg
22.90000
19.12500
15.05000
28.07500
20.56667
15.40000

...) to compute the statistics
by every available combination of varl, var2, ...

165 / 243

Multiple variables, one aggregated statistic

In the formula, write cbind () on the left-hand side to

compute the same statistic for many variables.

aggregate(cbind(mpg, hp) ~ cyl + am,
mtcars, mean)
aggregate(d[, c("mpg", "hp")],

d[, c("cyl", "am")], mean)

#> cyl am

#>
#>
#>
#>
#>
#>

© ON N 00 O N

R RROOO

mpg
22.90000
19.12500
15.05000
28.07500
20.56667
15.40000

84.
115.
194.

81.
131.
.50000

299

hp
66667
25000
16667
87500
66667

166 [243

One variable, multiple aggregate statistics

meanSD <- \(x) c(mean = mean(x), sd = sd(x))
al <- aggregate(mpg ~ cyl, mtcars, meanSD)
a2 <- aggregate(d$mpg, list(d$cyl), meanSD)
str(al)

NB. If the function returns a vector of statistics, the output
looks a bit inconvenient — a DF / list with 2 elements!

1. Vector: grouping variable
2. Matrix: all statistics

Fun fact: R supports DFs of DFs, matrices of lists etc.

Convert the result into a non-nested DF for usability:

al <- data.frame(cyl = alcyl, almpg)
a2 <- data.frame(cyl = a2[, 1], a2[, 21)

167 | 243

Multiple inputs, multiple aggregate outputs

Nesting for generality: both the names of FUN returns and
input variable names must be preserved.
al <- aggregate(cbind(mpg, hp) ~ cyl + am,

mtcars, meanSD)

a2 <- aggregate(d[, c("mpg", "hp")1,
dl, c('cyl", "am")], meanSD)

Check str(al) and un-nest:

al <- data.frame(al[, c("cyl", "am")],

mpg = al$mpg, hp = al$hp)
a2 <- data.frame(a2[, 1:21,

mpg = a2[, 3], hp = a2[, 41
all.equal(al, a2) # TRUE

For full automation, use indexing based on the input and

output lengths; create names by pasting with *.
168 / 243

Scatterplot with ranges

Plot quartiles of fuel efficiency by cylinder count:

s <- function(x) quantile(x, c(0.25, 0.5, 0.75)
a <- aggregate(mpg~cyl, data = mtcars, FUN = s)
a <- data.frame(cyl = acyl, ampg)
myPlot(mtcars$cyl, mtcars$mpg)
for (i in 2:4) 1lines(al, 11, al, il,

wd = 2+(i==3), 1ty = 2-(i==3), col = 2)

30 ~<
25
20
15
10 T ?

169 / 243

Tables

table() counts tallies values in vectors by returning a
named vector of counts (repetitions):

x <- rep(c("A"™, "B", "Q"), times = 2:4)
X #AA BBB QQQ0Q

table(x)

#> A B (Q

#> 2 3 4

By default, NAs are not tabulated - change the useNA
argument:

table(c(x, NA, NA)) # Same
table(c(x, NA, NA), useNA = "ifany")
#> A B Q <NA>
#> 2 3 4 2
170 / 243

Counting with tables

A table of a vector is not really a table - it is a named vector
containing the observations counts. To get the original
values from the table, convert the names to numeric.

Are there identical fuel efficiency values?

x <- table(mtcars$mpg)

as.numeric(names(x)) # Original values

d <- data.frame(mpg = as.numeric(names(x)),
count = as.numeric(x))

plot(d, ylim = c(0, max(x)))

2 . . . e o .
l } ® 000000 0000 O L] L] L] L] L] L]
0

I T T T 1
10 15 20 25 30

171/ 243

Histograms are count tables

Frequency distributions can be visialised with tables
instead of histograms. Let x <- mtcars$cyl.

plot(table(x), barplot(hist(x, breaks =
wd=4) table(x)) c(3, 5, 7, 9)

15

10 10

More generally, a histogram is really table(cut(...)).
172/ 243

Box-and-whisker plot

Imagine applying aggregate (), computing certain order
statistics of a variable by group, and listing all values too
far away from the median. Their visualisation is a box plot.

* Thick line: median
* Box top and bottom: Q, and Q,

« Whiskers: the most extreme observation within 1.5-1QR
distance from the box top and bottom

« Points: observations further away from those box

173/ 243

Application of boxplot()

The InsectSprays data set contains information on
insect counts in experiments with 6 different insecticides.
Apply the same kind of simple formula as in aggregate():

boxplot(count ~ spray, InsectSprays,
frame = FALSE, col = "#00000000")

25

20 : B
s1 (5

o] T
10 : : —_

5 —
;+;

0 —

NB. Remove the frame with frame = FALSE, not bty="n".
174 [243

Useful return from boxplot()

boxplot() returns useful coordinates to extend the plot.

Pass the same formula for boxplot() and aggregate() for
comparability. The boxes are centred around 1, 2, ...

Compute the mean and 95% Cl = X + 26, /\/n:

f <- count ~ spray
meanSD <- \(x) c(mean=mean(x), sd=sd(x), n=length(x))
a <- aggregate(f, InsectSprays, meanSD)
a <- data.frame(count = a[, 11, al[, 21)
b <- boxplot(f, InsectSprays)
points(1:6, a$mean, pch = 16, cex = 1.5, col = 4)
arrows(1:6, a$mean + 2*a$sd/sqrt(a$n),
1:6, a$mean - 2xa$sd/sqrt(a$n),
col=4, code=3, angle=75, length=0.1, lwd=2)

175/ 243

Box plot with extensions

25 T
20 i —
+ T
- [
2 . 85
10 — E E .
—r— —— O
5_ -1
— [a5]
o @Ct?
[I I I I]
A B C D E F

176 [243

sweep across array dimensions

Apply statistics across margins with sweep(). Use the same
dimension indices as with apply(): 1 =rows, 2 = columns...

General syntax:

sweep(x, MARGIN, STATS, FUN = "-", ...)
* X: input array
« MARGIN: dimension index

« STATS: a vector / matrix of statistics to sweep out

« FUN: function that does the transformation: division,
subtraction etc.

177 [243

Application of sweep()

Subtract column means:
sweep(mtcars, 2, colMeans(mtcars), "-")

Divide matrix rows by row sums so that they add up to to 1:
set.seed(1)

x <- sort(rnorm(50)); g <- seq(-5, 5, 0.1)

d <- outer(x, g, \(x, y) dnorm(x-y))

sweep(d, 1, rowSums(d), "/")

Same as d / rowSums(d) through recycling

Same as apply(d, 2, \(x) x/sum(x))

Generate values uniformly in a 4D cube with sides 3, 4, 2, 6
by rescaling dimensions:
set.seed(1)
X <- matrix(runif(1000%4), ncol = 4) # [0, 1]
sweep(x, 2, c(3, 4, 2, 6), "*")
178 [243

Custom series scaling

Often, indices are compared with respect to a reference
date (e.g. 2015 = 100%).

Recall the matrix of stock prices m from Slide 142. Divide
every column of the matrix by the beginning-of-2020 price:

X <- d'L[[l]]$date 20 - = SP500
i20 <- whlch(x>-"2020 01-01")[1] T e

m2 <- sweep(m, 2, m[i20, 1, "/") *° AN
matplot(x, m2, type = "1", 1o ﬁﬁa&%ﬂh ,,,,,,,,,,,,,, 1

1ty = 1, bty = "n", lwd = 2) ‘
abline(v=as.Date("2020-01-01")) ©os5-, | ‘ ‘ ‘
<.. Identical commands ..> 2019 2020 2021 2022 2023

179/ 243

Smooth conditional average lines

loess() depends on two crucial parameters:

- span - the bandwidth for smoothing (values 0.1-0.6 work
well)

- degree - use 0 for locally constant prediction, 1 for
locally linear and 2 for locally quadratic
« Prediction of bounded variables (dummies, conditional
variances etc.) requires degree = 0 to respect the range
« To predict values close to the boundary, use
control = loess.control(surface = "direct")
« Otherwise, NAs are possible

180/ 243

Confidence bands

Confidence bands can be plotted around the fitted values
where the standard error of prediction is available.

set.seed(1); x <- rnorm(300); y <- x"2 + rnorm(300)
1 <- loess(y ~ x, span = 0.3, degree = 1,
control = loess.control(surface = "direct"))
xg <- seq(-3, 3, 0.2) # Grid
p <- predict(l, newdata = xg, se = TRUE)

plot(x, y) °
lines(xg, p$fit, col = 2) 4
lines(xg, p$fit+2xpJse.fit, 2

0

1ty = 2, col = 2)
lines(xg, p$fit-2xp$se.fit, -2
lty = 2, col = 2) A

181/ 243

Shading confidence regions

Use polygon() to fill the shape between the lines formed
by the ends of the point-wise confidence intervals.

To get the shape, start at the first point of the upper Cl line,
move right, drop to the right end of the lower ClI line, and go
left (reversing the point order):

plot(x, y)
yh <- p$fit+2xpfse.fit
yl <- p$fit-2#p$se.fit
polygon(c(xg, rev(xg)),
c(yh, rev(yl)),
col="#88003344", border=NA)
lines(xg, p$fit,
wd = 3, col = 2)

0
N o N A O

182/ 243

3D graphics, animations, and video

encoding

Palettes from linear colour ramps

To create smooth transitions between multiple colours, use
colorRampPalette(). It defines a function that accepts a

vector of colours as input and returns their interpolation as
output.

Skip the green colour in a colour gradient:

mycols <- c("#881100", "#BBBBOO", "#5500FF")
colFun <- colorRampPalette(mycols)

cs <- colFun(10)

plot(rep(0, 10), col = cs)

183/ 243

Custom axis transformation

Some variables exhibit extreme values that extend the
plotting ranges and make information in the middle

indiscernible.
plot(..., log = "y") will not work with negative values.
Create your own unique transformations:
- ‘Squish’ the data using a bijective function and use the
linear scale

- ‘Unsquish’ the axis labels and place them at appropriate
spots of the linear scale

« Alternative: design a custom non-linear scale with pretty
values and ‘squish’ it

184 [243

Squishing function requirements

Transformations should not result in artifacts:

« Continuity: transformed data should not have jumps

« Support in the real domain: transform x € R

« Monotonicity: lower original values ~ lower
transformed values

« Invertibility: £~ must exist s.t. f'(f(x)) = x in its domain
« Lipshitz continuity: f’(x) should be bounded
« sqrt(x) has unbounded derivatives as x — 0*

- Predictable fixed points: f(0) =0 or f(1) = 1 is good
« Oddness: f(x) = —f(—x) to avoid distortions

185/ 243

Squishing function example

A power transformation (p < 1) with a shift a > 0 to avoid
infinite f’(0) looks good:

f(x)
f)

= [(|x] + a)P — aP] - sign x
=[(lyl + @?)'"? - a] - signy

« f(x) = p(]x] + a)P~" is continuous

+ f(0)=0
- f/(0)e R

Henceforth: p = 1/6, a = 0.001.

186 [243

Squishing function definition

squish <- function(x, pow = 1/6, shift = 0.001)
((abs(x) + shift)”pow - shift”pow) * sign(x)

unsquish <- function(y, pow = 1/6, shift = 0.001)
(Cabs(y) + shift”pow)”(1/pow) - shift) * sign(y)

187/ 243

Squishing function and its inverse

1.0
0.5
0.0
-0.5 4

-1.0 -

-10 -5 0 5 10

1le+06 —
5e+05 —
0e+00 —
-5e+05
-le+06 —

-10 -5 0 5 10

188 / 243

Squishing in practice

05 +

0.0

1980 1990 2000 2010 2020

0.3
0.1 +

0.03 —
0.01 +

-0.01
-0.03

-0.1
-0.3 o

I T T T 1
1980 1990 2000 2010 2020

189/ 243

Squishing implementation

plot(dx, dyl, ylim = c(-1, 1))
points(d$x[d$x<2000], d$y2[d$x<2000], col=4, cex=0.5)
points(d$x[d$x>=2000], d$y2[d$x>=2000], col=2, cex=0.5)

Squish all vertical coordinates:

plot(d$x, squish(d$yl), yaxt = "n",
ylim = squish(c(-1, 1)))
yax.pos <- c¢(0.003, 0.01, 0.03, 0.1, 0.3, 1)
yax.pos <- c(-rev(yax.pos), 0, yax.pos)
axis(2, at = squish(yax.pos), labels = yax.pos)
points(d$x[d$x<2000], squish(d$y2[d$x<2000]),
col = 4, cex = 0.5)
points(d$x[d$x>=2000], squish(d$y2[d$x>=20001),
col = 2, cex = 0.5)
abline(h = squish(yax.pos),
col = "#00000055", lwd = 1, 1ty = 3)

190 / 243

Squishing both coordinates

0.3

0.1

0.03

0.01
0.003

-0.003
-0.01

-0.03
-0.1

-0.3

e 1981
1999
2005
2008
2010

® 2014

e 2017

_0.1 —

0.003 —
0.01 —
0.03 —

0.1 —
0.3 —

191/ 243

X-Y squishing implementation

yax.pos <- ¢(0.003, 0.01, 0.083, 0.1, 0.3, 1)
yax.pos <- c(-rev(yax.pos), 0, yax.pos)
cs <- rainbow(nrow(d), end = 0.65, v = 0.8)

plot(squish(d$yl), squish(d$y2), col = cs,
x1lim = squish(c(-1, 1)), ylim = squish(c(-1, 1)),
xaxt = "n", yaxt = "n", asp = 1)
axis(1l, at = squish(yax.pos), labels = yax.pos, las=2)
axis(2, at = squish(yax.pos), labels = yax.pos, las=1)
abline(h = squish(yax.pos), v = squish(yax.pos),
col = "#00000044", 1lwd = 1, 1ty = 2)
abline(h = 0, v = 0, lwd = 1)
ii <- round(quantile(1:nrow(d), 0:6/6))
legend("topleft", legend = round(d$x[ii]),
col = cs[ii], pch = 16)

192 / 243

Squish to help read small values

Plot p-values of two tests and highlight non-rejections
(p=1/4,a =0, source x and y not provided).

plot(NULL, NULL, xlim = c(0, 1), ylim = c(0, 1),
XaXt - nnn’ ant - ||n||)
ats <- c(0, rep(107(-5:-1),

each=2) * c(1,5), 1) PR v)
axis(1, at = f(ats), Lo e oo

labels = ats, las=2) £ a e | &
axis(2, at = f(ats), £ | 2% 3 .

labels = ats, las=1) S cef)
ab-LiHE(h = 'F(@.BS) ' 00'605: . ;VXXX Proposed model, dyn. shape

v - fEe.os). lty = 2) Dol
polygon A : S

£(c(0.05, 0.05, 1, 1)), 833 g2 g3 & -

'F(C(G.GS, 1, 1’ 0‘05)) , Christoffersen CC test p-value

col = "#00000018")
points(f(x), f(y))

193 / 243

Why animations and 3D?

* Observing the world moving in 3D is the natural
perception in humans

- Static 2D plots and schemes are unnatural, often
confusing, and require special knowledge

- 3D graphics are an excellent way to visualise changes
simultaneously in two explanatory variables /
parameters

« Animations allow the user to view 3D objects at various
angles or to add a new dimension to 2D graphics

- Indispensable investigation / debugging tool: animated 3D
plots = changing 3 parameters simultaneously

194 [243

Multi-variate tables

table(x1, x2, x3, ...) creates a table of counts for all
possible combinations of x,, x,, X5, ... from their support:

set.seed(1)

x1 <- round(rnorm(1000, sd = 2))
x2 <- round(rnorm(1000, sd = 2))
x3 <- round(rnorm(1000, sd = 2))

a <- table(x1, x2, x3)
dim(a) # 14 15 15

195 / 243

Bivariate tables as the foundation

set.seed(1)
x1 <- round(rnorm(1000, sd
x2 <- round(rnorm(1000, sd

table(x1, x2)

X2
x1 -7 -6 -5 -4 -3
-6 0 0 0 0 1
-5 0 0 0 3 0
-4 0 0 1 0 4
-3 0600 1 7
-2 0 0 1 4 5
-1 0 2 1 910
06 0 1 4 614
1 0 6 1 5160
2 8 0 3 2 7
3 0 8 08 5 6
4 1 8 0 0 3
5 0 06 1 0 0
6 0 8 0 0 0
8 0 8 0 0 0

There are many ways to visualise this verbose table.

-2 -

0
2
5
5
15
25
24
22
14

4
3
1
0
0

o~ N

15
26
31
22
10

© R NN O

NNO W

11
10
10

RProORRO

COOOWWNOVODNRLRRLOO N

COORORRPNORRFPROOOU

[oN=No NN W Yo No Yo oo o NeN

[cNofoltolofoofoNoNoNoRoNo RN |

2))
2))

196 [243

Visualising 2D tables via point size

Extract the coordinates for plotting counts:

X <- as.numeric(rownames(a))
y <- as.numeric(colnames(a))

Xy <- as.matrix(expand.grid(x, y))

Show the number of occurrences

as the area of the circle:

plot(xy[, 11, xy[, 21,
pch = 16, asp = 1,
cex = sqrt(a)*0.8,
col "#00000088")

197 / 243

Visualising 2D tables via sunflowers

Points with higher counts are plotted as sunflowers with

multiple petals.

Show the number of occurrences *

as the area of the circle:

sunflowerplot(
xyl[, 11, xy[, 2], a,
bty "n", las = 1,
asp = 1)

6 o

2 4

198 [243

Visualising 2D tables via image()

Tables are the easiest way to obtain a matrix from data
input by counting the occurences:

6 —

image(x, y, a, 2 -
bty = "n", # No box 0- q
las = 1, # Healthy neck 2
asp = 1) # 1:1 ratio 1

-6 —

T 1T T T T T 1
-6 -4 -2 0 2 4 6 8

199 [243

Custom breaks for bivariate histograms

table() counts only unique occurences, which is
meaningless for continuously distributed variables.

Use cut() to ‘bin’ the data into custom levels:

set.seed(1)

x1 <- rnorm(1000)
x2 <- rnorm(1000) B
bs <- c(-Inf,seq(-2.5,2.5,0.5),Inf) ~ L

x1lc <- cut(x1, breaks = bs) 1T

x2c <- cut(x2, breaks = bs) 0— *

a <- table(xlc, x2c) a1

xs <- ¢(-2.75, bs[2:12]+0.25) -

par(mar = c(2, 2, 0.5, 0.5)) 2T

image(xs, xs, a, L I B R

bty = nnu’ 'LaS - 1’ asp - 1) -3 -2 -1 0 1 2 3
rug(bs, side); rug(bs, side = 2)

200/ 243

Topographic maps

Summit'

Summit

rﬁQ_._Summlt > / Summlt =y
/ Saddle CllffSIdeu-.\ >

alle;\

201/ 243

Contour plots

Suppose that a function is sampled on an evaluation grid to
obtain a discrete approximation of a 3D object.

contour() attempts to draw level lines as shapes
determined by equal heights: imagine a person walking
around a mountain at the same height level.

set.seed(1)

x1 <- rchisq(10000, df = 4)
X2 <- rchisq(10000, df 4)
Xxs <- 0:10; bs <- c(xs, Inf)
xlc <- cut(x1l, breaks = bs)
x2¢ <- cut(x2, breaks = bs) o 2 4 & 8 10
a <- table(xlc, x2c)

image(contour(
XS, Xs, a) XS, Xs, a)

202 / 243

Customise contour plots

Like with histograms, to create a custom number of level
lines, do not use the nlevels = 15 - create the levels

explicitly.

Customise vectorised colours, line widths etc.
corresponding to those levels.

Transforming the matrix is the same as applying the inverse
transformation to the values (recall squishing).

The results look good if the plot starts at a value slightly
greater than the smallest one and ends at a values slightly
less than the largest one.

203 / 243

Custom contour plot example

gs <- quantile(unique(a), c(0.05, 0.95))

1s <- round(seq(gs[1], gs[2], length.out = 6))
cs <- gray(6:1/7)

contour(xs, xs, a,

levels = 1s, col = cs, lwd = 6:1+1)

204 [243

Saving contour lines

In certain cases, the user might want to save the contour
lines - e. g. for squishing or 3D perspective transformation

contourLines() computes and saves the lines as a list of
lists with 3 elements: level, x coordinates, y coordinates:
there can be multiple lines per level.

1List <- contourLines(xs, xs, a, levels=1s)
str(lList[[1]1)

10

#> $ level: num 11 ®
#>$ x :onum [1:11] 10 9.33 9 8.54 8 ..

$y :onum [1:11] 7.86 7 6.45 7 7.88 ... o
cs <- rev(rainbow(6, end=0.6, v=0.7))
plot(NULL, NULL, -

xlim = c(0, 10), ylim = c(0, 10))
for (i in 1:1length(lList)) {
j <- which(ls == lList[[i]]$level)
lines(lList[[i]], col = cs[jl)
}

205 / 243

Filled contour plot

filled.contour() draws filled topographic maps - it
needs the levels incl. max. / min. and +1 colour for the areas.

It is not very flexible because it creates a rigid custom
layout(). The bare-bones command that simply adds
polygonsis .filled.contour(x, y, z, levels, cols):

10 4

1s2 <- c(min(a)-1, 1s, max(a)+1) .
cs2 <- hcl.colors(7)
plot(NULL, NULL, 7
xlim = c(0, 10), ylim = c(0, 10)) 44
.filled.contour(xs, xs, a,
levels = 1s2, col = cs2)
sapply(lList, lines, lwd =

2) 0-

206 [243

Sometimes, a 2D plot wastes space & time

If a plot is barely visible at full vertical size, it is bad.

always

certain

almost always

Probabilty phrase

very likely
very often

high chance
generally
usually

Tikely

expected

often

probale
possible

maybe
uncertain
chance

liable to happen
doubtiul
sometimes

not often

low chance
unlikely

rarely

almost never
almost impossible
very unlikely
never
impossible

TR

10 20 3 40 S0 60 70 80 %0 100
Numerical interpretation (%)

5%

207 / 243

3D plots have always been popular

Amplitudes of the partials of a string as functions of time.

208 [243

Ingredients for a 3D plot

Making a 3D surface plot is the same as visualising a matrix
- treat a grid of values as the surface height.

Substitute contour () with persp(). Angle of view
(degrees): theta = 60 - horizontal, phi = 25 - vertical.

contour(xs, xs, a) persp(xs, xs, a,
theta=60, phi=25)

209 / 243

Viewing transformation matrix

persp() returns a very important object - the viewing
transformation matrix.

The VTM is used to transform 3D points into 2D coordinates
via trans3d(x, y, z, VTM) to added onto the plot via
points() or lines().

Add points (8, 8, 50) and (10, 6, 200):
p <- persp(xs, xs, a,
theta = 60, phi = 25, ...)
Xy <- trans3d(c(8,6), c(8,10),
c(50,200), p)
points(xy, pch = 16,
col = 1:2, cex = 2)

210/ 243

Adding levels lines to 3D

Recall that the contourLines() returns a list of lists with x,
y, and level - but the level is really the z coordinate.

trans3d(x, y, z, VTM) requires that x, y, and z be of the
same length - this can be achieved by repeating the scalar
level as many times as there are points in x.

« Compute the points for contour lines

- Initialise a 3D plot, save the viewing transformation
matrix

 For each contour line, transform the 3D coordinates and
add to the plot

« Choose appropriate colour and style

211/ 243

3D plot with lines at fixed levels

set.seed(1); xs <- 0:10; xb <- c(xs, Inf)

x1 <- rchisq(10000, df = 4); x2 <- rchisq(10000, df = 4)
x1lc <- cut(x1l, breaks = xb); x2c <- cut(x2, breaks = xb)
a <- table(xlc, x2c)

gs <- quantile(unique(a), c(0.05, 0.95))

1s <- seq(qgs[1], qs[2], length.out = 6)

m <- contourLines(xs, xs, a, levels = 1s)

cs <- rev(rainbow(6, end = 0.6, v = 0.7))

p <- persp(xs, xs, a, theta=60, phi=25,
ticktype = "detailed", xlab = "",
ylab = "", zlab = "")

for (i in 1:length(m)) {

z <- m[[il]$Llevel

j <- which(ls == z)

n <- length(m[[i]]1$x)

xy <- trans3d(m[[il1$x, m[[il1$y,
rep(z, n), p)

lines(xy, col = cs[jl, lwd = 2)

212/ 243

Plotting arbitrary 3D functions

To visualise any 3D function:

« Create an x grid and a y grid
« For all combinations (xi,yj), compute f(x,-,yj)
- If necessary, assemble the results in a matrix

« This is where parallelisation shines: compute multiple
values in parallel!

- Call persp() with the two grids and z matrix

expand.grid(x1, x2, x3, ...) returnsa DF of all
possible combinations of x,, x,, X,

213/ 243

3D function plot example (1/4)

f(x,y) = log(x +1.9) + log(y + 1.8) — 0.6x — 0.7y

v, f(x,y)
214 [243

3D function plot example (2/4)

Since log x may tend to —oo, plot the function in the
radius r = 1.5 around the origin (domf == ||(x y)|| < 1.52).

f <- \(x) if (sum(x"2)<2.25)

2 + log(x[1]+1.9) + log(x[2]+1.8)

- 0.6%xx[1] - 0.7*x[2] else NA

fp <- \(x) if (sum(x”2) < 2.25)

c(1/(x[11+1.9)-0.6, 1/(x[2]+1.8)-0.7) else c(NA, NA)
nx <- 31; ny <- 21
xseq <- seq(-1.4, 1.4, length.out X)
yseq <- seq(-1.4, 1.4, length.out y)
Xy <- as.matrix(expand.grid(x = xseq, y = yseq))

=N
=N

215/ 243

3D function plot example (3/4)

Compute the values of f and Vf in parallel for all
combinations and create the n,xn, matrix of values:

library(parallel); ncores <- 4

cl <- makeCluster(ncores) # For all 0Ss
clusterExport(cl, c("f", "fp", "xy"))
ii <- 1:nrow(xy)

flist <- parLapply(cl, 1:ii, \(i) f(xy[i,1))
fplist <- parLapply(cl, 1:ii, \(i) fp(xy[i, 1))
zmat <- matrix(unlist(flist), ncol = ny)
zpvecx <- unlist(lapply(fplist, "[", "x"))
zpvecy <- unlist(lapply(fplist, "[", "y"))
zpmatx <- matrix(zpvecx, ncol = ny)

zpmaty <- matrix(zpvecy, ncol = ny)
stopCluster(cl)

216 [243

3D function plot example (4/4)

Create a custom plotting function with ascetic parameters:
delete the box, axes, axis labels etc.

myPersp <- function(...) persp(...,
X'Lab = IlII’ y'Lab = IlII’ Z'Lab = IlII’
asp = 1, theta = 45, phi = 20,
axes = FALSE, box = FALSE)

par(mar = c(0, 0, 0, 0))
myPersp(xseq, yseq, zmat)
myPersp(xseq, yseq, zpmatx)
myPersp(xseq, yseq, zpmaty)

217 [243

Semi-transparent surfaces

Since the objects are added in the order they are called in,
every new addition is super-imposed. As a consequence,
there is no proper clipping because of this drawing order.

It is possible to prepare the canvas and change the drawing
order manually via a dummy plot.

- Create a single fully transparent square and manually
set the plotting limits
« Add the points

« Use par(new = TRUE) to write over the old plot

« Add the semi-transparent surface with no axes or labels
« Use the same plotting parameters

218 / 243

Some height maps are easy to read

219/ 243

Some height maps are not so easy to read

Q ¥239§ N,
Q/ a5 IS
" o 4 B I
; 3 I
AN G
o | e { 1{'
- . PR NI
S P 5‘9‘6, Z
12 5 O 8/
o °(Ss 8 (R
v o
o !
o > \
T 1
10 12

220/ 243

Juxtaposing contour and 3D plots (1/2)

Data used for plotting:

f <- \(x, y) dchisq(x, 5) * dchisq(y, 8)

g <-\(x, yJ 1 +x+y+ 3% sin(x) + 3 * cos(0.5%y)
set.seed(1)

X <- rchisq(200, 5); Y <- rchisq(200, 8)

XY <- list(x = X, vy =Y); Z <- g(X, Y) + rnorm(200)

Create the grid and evaluate the functions:

ngrid <- 21

Xg <- seq(0®, 12, length.out = ngrid)

Yg <- seq(0, 20, length.out = ngrid)

XYg <- as.matrix(expand.grid(Xg, Yg))

fmat <- matrix(f(XYgl[, 11, XYg[, 2]1), nrow
gmat <- matrix(g(XYg[, 11, XYg[, 21), nrow

ngrid)
ngrid)

221/ 243

Juxtaposing contour and 3D plots (2/2)

par(mfrow = c(1, 2))
1s <- seq(max(fmat)*0.01, max(fmat)*0.98, length.out=10)
contour(Xg, Yg, fmat, levels = 1s); points(XY, col = 2)

p <- persp(0:1, 0:1, matrix(rep(0, 4), 2),
xlim = ¢(0,12), ylim = c(0,20), zlim = range(0,fmat),
xlab = "X", ylab = "Y", zlab = "Density",
theta = 30, phi = 20,
border = NA, col = "#00000000") # <-- TRANSPARENCY
points(trans3d(X, Y, rep(0, 200), p),
pch = 16, col = 2, cex = 0.5)
par(new = TRUE) # Do not clear the plotting window
persp(Xg, Yg, fmat, xlab="", ylab="", zlab="",
xlim = ¢c(0,12), ylim = c(0,20), zlim = range(0,fmat),
theta = 30, phi = 20, col = "#FFFFFF77",
box = FALSE, axes = FALSE) # <-- NO BOUNDING BOX

222 [243

Using 3D to save space (1/4)

Recall the example from earlier: plot many densities. It can
be done parsimoniously in 3D.

Generate a data set:

set.seed(1)

m <- rep(1:20, each = 100)
X <- rnorm(2000)*m*0.25 + m
d <- data.frame(x, m)

Compute the densitiy of X for each value of m:
dl <- lapply(1:20, \(i) density(d$x[d$m == i], bw="SJ"))

223 [243

Using 3D to save space (2/4)

Many densities in a single plot look cluttered:

cs <- rainbow(20, end = 0.65, v = 0.7)
plot(NULL, NULL, xlim = c(-5, 27), ylim = c(0, 0.45))
lapply(1:20, \(i) lines(dl[[il], col = cs[i], lwd = 2))
ms <- c(1, 5, 10, 15, 20)
legend("topright", paste@("m=", ms), col = cs[ms],

pch = 16, bty = "n", title = "Group")

224 [243

Using 3D to save space (3/4)

fysuad

225 [243

Using 3D to save space (4/4)

Empty perspective box with NO SCALING
p <- persp(0:1, 0:1, matrix(rep(0, 4), 2), border = NA,

x1im = range(d$m) + c(-1, 1),
ylim = (yl <- range(sapply(dl, "[[", "x"))),
zlim = range(0, sapply(dl, "[[", "y"))*1.05,

theta = 45, phi = 15, scale = FALSE, expand = 15,
xlab = "Group", ylab = "Value", zlab = "Density",
ticktype = "detailed")

lapply(1:20, \(i) { # Lines with white halps
xy <- trans3d(rep(i, length(dl[[i]1$x)),
(ys <- dl[[i11$x), dl[[i]l1$y, p)
lines(xy, col = "white", lwd = 5)
lines(xy, col = cs[i], lwd = 2)
g <- trans3d(c(i, i), c(yl[1], min(ys)), c(6, 0), p)
lines(g, 1ty = 2, col = cs[il) # Dashed guides
B

226 [243

Optimising 3D plots for journals

Use monochromatic images with large labels and halos for
better legibility. Find a good angle!

r=-0.034
r=-0.020
r=-0.005
r=0.001
r=0.006
r=0.017
r=0.033

LSS pied

227 [243

Animations inR

Animations are typically created from a sequence of frame.
Standard animation workflow:

« Produce n plots in a sequence, writing each plot to disk
as a raster image (PNG, not PDF)

- image(..., zlim = c(a, b)) ensures thatthe
colours are consistent (same cut-off in all frames)
- Use an external tool (ImageMagick or FFmpeg) to
assemble the results into a GIF or MP4
« Optionally: crush the GIF size with gifsicle
« Orsimply insert the images into different slides

228 [243

https://www.lcdf.org/gifsicle/

Manual invocation of image sequence

1/8

229 [243

Manual invocation of image sequence

229 [243

Manual invocation of image sequence

229 [243

Manual invocation of image sequence

229 [243

Manual invocation of image sequence

229 [243

Manual invocation of image sequence

229 [243

Manual invocation of image sequence

78

229 [243

Manual invocation of image sequence

a3

229 [243

Simplest animation: just images

set.seed(1); x <- matrix(rnorm(30000), ncol = 3)
bs <- c¢(-Inf, -3:3, Inf)
z <- table(cut(x[, 1], breaks = bs),
cut(x[, 2], breaks = bs), cut(x[, 3], breaks = bs))
xs <- seq(-3.5, 3.5, 1)
z <- loglp(z) # Colours on a logarithmic scale
mycols <- c("#FFFFFFAA","#881100","#BBBB0O","#0000BB")
cs <- colorRampPalette(mycols) (21)

drawFrame <- function(i) {
par(mar = c(2, 2, 0.5, 0.5))
image(xs, xs, z[,,i], zlim = c(8, max(z)),
col = cs, bty = "n", las = 1, asp = 1)
legend("topleft", paste0(i,"/",dim(z)[3]1), bty="n")

for (1 in 1:dim(z)[31) { # i in 1:8
png(paste@("anim-",1i,".png"), 320, 320, type="cairo")
drawFrame (i)
dev.off()

230/ 243

Prerequisites for creating GIFs

The animation package has facilities for creating GIFs.
Having a working ImageMagick installation is required.

Check: call convert from the command line / terminal /
console / PowerShell:

convert --version

#> Version: ImageMagick 7.1.1-19 ...

#> Copyright: (C) 1999 ImageMagick ...
#> ..

This is the sign that the binary was found in the PATH
variable.

231/ 243

Using saveGIF()

drawFrame <- function(i) { # Draws the i-th slice of a 3D array
par(mar = c(2, 2, 0.5, 0.5))
image(xs, xs, [, , il, zlim = c(0, max(z)),
col = ¢cs, bty = "n", las = 1, asp = 1)
legend("topleft", pasteO(i, "/", dim(z)[3]1), bty = "n")

Run a loop or - even better - (s)apply a function that draws

every frame inside saveGIF().

library(animation)

saveGIF(sapply(1:8, drawFrame), "anim.gif",
interval = 0.25, # Dey between frames
ani.width = 320, ani.height = 320,
ani.dev = \(...) png(..., type = "cairo"))

Optional: apply gifsicle (36 — 20 kB):

system("gifsicle -03 --colors 32 anim.gif -o anim.gif")

232/ 243

https://www.lcdf.org/gifsicle/

Using FFmpeg

GIF animations may take up a lot of space because the GIF
video compression algorithm is highly inefficient.

FFmpeg offers opportunity for better-quality plots:

« Write individual frames as files
« Preferably to the temporary directory tempdir()

- Use the ffmpeg command to convert the image
sequence input to properly compressed output

233 /243

Video codecs

FFmpeg comes bundled with many video encoders.

Viceo codec: algorithm to compress and decompress video
and audio

Popular codecs:

« AV1 - best compression for given quality, used by Netflix
« H265 - highly efficient; used by newer smartphones
« H264 - old but gold, worse compression ratio but
supported virtually everywhere, used in WhatsApp,
Telegram etc.
Do not use anything else - for compatibility, encode H264!

234 [243

FFmpeg example

Create 720 files with a 0.5° angle step:

td <- tempdir()
sapply(seq(0, 359.5, 0.5), \(3) {
fn <- paste0(td, "/f", sprintf("%04d", j*2), ".png")
png(fn, 320, 320, type = "cairo")
df3D(i = floor(j / 45)+1, theta = j)
if (3 %% 50 == 0) print(j)
dev.off()
B

Run in console as a single line:

ffmpeg -y -framerate 30 -pattern_type glob
-i '/tmp/<YourValueOfTD!>/f*.png'
-an -c:v 1ibx264 -pix_fmt yuv420p -crf 25
-preset slower sB05-anim.mp4

235/ 243

Calling FFmpeg from within R

FFmpeg options:

+ -an = audio none

« -Cc:V =codec of video
- -crf = constant-rate factor = compression strength
« Higher = lower quality but smaller files

- -preset slower = encode more efficiently

Invoke FFmpeg from R with the explicit temporary directory
path (make it a single line):

mask <- paste0(td, "/framex.png")
system(paste@("ffmpeg -y -framerate 30
-pattern_type glob -i '", mask, "'
-an -c:v 1ibx264 -crf 25 -pix_fmt yuv420p
-preset slower sB5-anim.mp4"))

236 [243

Trailing-tail plot

Time-series plots of multiple variable often look clearer if
the evolution is shown in the context of previous

observations: which changes are the most recent and what
lead up to them?

Possible uses:

« Phillips curve
« Co-integrating relationships

- Systems of equations (even in 3D)

237 [243

Example of trailing-tail plot

o _
[aV]
2
0—_’ —
o
T 5 |
s 2
(=]
g
£ 2 4 2008
° ®
g Q
5 2 .
3
=
£ o —m m
L{? ,
[T T T T T T 1
70 75 8.0 85 9.0 95 10.0 105

Unemployment rate (overall)

238/ 243

Steps for trail plotting

« Plot the newest dynamics in bold and dark
« Plot the old dynamics in thin and pale

- Label round years (2000, 2004, ...)

- Mark all years (2000, 2004, ...)

239/ 243

Function for trail plotting (1/2)

tailFrame <- function(time, x, y, i = NULL, n = 48, ...) {
if (is.null(i)) i <- length(x)
dots <- list(...)
if (is.null(dots$xlim)) dots$xlim <- range(x, na.rm
if (is.null(dots$ylim)) dots$ylim <- range(y, na.rm
dots[c("x", "y")] <- list(NULL, NULL)
dots$bty <- "n"
do.call(plot, dots)
abline(v = pretty(x), h = pretty(y), 1ty = 2, col = "#00000044")
inds <- max(i-n, 1):i # These indices are plotted in a bolder and darker line
m <- length(inds)
cols <- colorRampPalette(c("#00000033", "#000000FF"), alpha = TRUE)(m) # Darker
< colours
wds <- exp(seq(log(1.5), log(4), length.out = m)) # Thicker lines towards the end
segments(x0 = x[inds[-1]1]1, y0 = y[inds[-1]], x1 = x[inds[-m]], y1 = y[inds[-m]], col =
< cols[-1], lwd = wds)
if (1 > 1) lines(x[1:i], y[1:i], col = cols[1], wd = 1) # Lines for old obs: thin and
< pale

TRUE)
TRUE)

Adding features for integer years

is.int <- abs(time - floor(time)) < 0.0001

int.time <- round(time[is.int])

ti <- which(is.int & (time <= floor(time[i]))) # Indices of previous periods (no
o future)

cexs <- pchs <- rep(1, length(int.time))

cexs[int.time %% 4 == 0] <- sqrt(2) # Mark every 4th year with a larger point
cexs[int.time %% 8 0] <- sqrt(3) # Mark every 8th year with an even larger point
pchs[int.time %% 2 == 0] <- 16 # Mark every 2nd year with a filled circle

ycols <- rainbow(length(int.time), v = 0.7, end = 0.65) # Different colours for
< temporal evolution

240 [243

Function for trail plotting (2/2)

Plot integer year points up until the chosen time moment
if (length(ti) > 0) {
s <- length(ti)
points(x[ti], y[ti], cex = cexs[1:s], col = ycols[1:s], pch = pchs[1:s], lwd = 2)

Plot marked year labels up until the chosen time moment
marked.years <- unique(floor(int.time/4)*4)

myi <- which(int.time %in% marked.years) # Marked point indices
ycols <- rainbow(length(int.time), v = 0.7, end = 0.65)

These indices = until the chosen time moment
ryrs <- round(timex4) / 4 # Division by powers of 2 is lossless
these.myi <- which((ryrs %in% marked.years) & (ryrs <= time[i]))
if (length(these.myi) > 0) {
s <- length(these.myi)
ii <- myi[1:s]
for (j in 1:length(these.myi)) # Not vectorising to create overlaps
textWithHalo(x = x[these.myi[j]], y = y[these.myi[j]], labels = int.time[ii[j]],
< pos = 3, font = 2, col.halo = "#FFFFFFEE", hscale = 0.001, vscale = 0.005)

return(invisible (NULL))

241 [243

Encoding an MP4 of trailing-tail animation

d <- read.csv("phillips-france.csv")
d$Date <- seq(1990, by = 0.25, length.out = nrow(d))
d$dCPI <- c(NA, diff(log(d$CPI)))

td <- tempdir()
for (1 in 1:nrow(d)) {
png(paste@(td, "/pc", sprintf("%04d", i), ".png"),
-~ 1280, 720, pointsize = 24)
tailFrame(x = d$A, y = d$dCPI*12%100, time =
-~ d$Date, i = i, xlab = "Unemployment rate", ylab

» = "Inflation rate, %")

if (4 %% 25 == 0) print(i)

dev.off()
}
system(paste@("ffmpeg -y -framerate 4 -pattern_type
- glob -i '", paste0(td, "/pc*.png"), "' -an -c:v

o 1ibx264 -pix_fmt yuv420p -crf 25 -preset slower
» sB05-anim-2.mp4"))

242 [243

Any questions on 3D visuals and making films?

Further reading

- How to make figures and presentations that are friendly
to colour-blind people (4-page poster only)
« Bongard puzzles
« 300+ Bongard problems online
« Modern digital image formats
« How JPEG compression works
- Teddy Tablante (Branch Education)
« Dr. Mike Pound (Computerphile)
« Nipun Ramakrishnan (Reducible)

« A parody of an enthusiastic ffmpeg user
+ Video formats, codecs, and containers

- Basics of video compression + why video glitches
happen (Captain Disillusion, 02:21)

243 [243

https://jfly.uni-koeln.de/color/
https://jfly.uni-koeln.de/color/
https://jfly.uni-koeln.de/html/manuals/pdf/color_blind.pdf
https://en.wikipedia.org/wiki/Bongard_problem
https://www.foundalis.com/res/bps/bpidx.htm
https://www.youtube.com/shorts/U_QNznf2FZA
https://www.youtube.com/watch?v=Kv1Hiv3ox8I
https://www.youtube.com/watch?v=Q2aEzeMDHMA
https://www.youtube.com/watch?v=0me3guauqOU
https://www.youtube.com/watch?v=9kaIXkImCAM
https://www.youtube.com/watch?v=-4NXxY4maYc
https://www.youtube.com/watch?v=flBfxNTUIns&t=141s
https://www.youtube.com/watch?v=flBfxNTUIns&t=141s

Thank you for your attention!

	Basics of image processing
	Plots, parameters, and devices
	Popular plots and tips for them
	Summarising and aggregating data
	3D graphics, animations, and video encoding

