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Presentation structure

1. Administrative formalities

2. Stationary and non-stationary processes

3. Statistical theory for TSA

4. Linear time-series model estimation and inference
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Administrative formalities



Why this course exists

• The demand for time-series analysis is going up
(cross-country analysis, short-term forecasting in
hundreds of economy sectors)

• Yet, data collection of many indicators started only recently

• For the crucial macro-economic variables, monthly or

quarterly data is the best that one can get

• There are many doctoral courses dedicated to
cross-sectional data analysis, but few on time series

• No empirical time-series modelling course⇒ fills the gap

• Promotion of transparent and harmonised data analysis
(required by most EU institutions) and reproducible
research at Uni.LU

• Sometimes, the data are bad, and one has to do something

at gunpoint and be honest about the limitations
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Uncertainty is scary

• Humans hate uncertainty; it is

quite scary when everything is

uncertain, when anything can

present danger

• Economists want to predict the

future as accurately as possible

• When working with time series,

one has to use only the past to

make decisions at the present

moment about the future
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Motivation for time-series analysis
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How this course was shaped

• I was working at STATEC / Hendyplan in 2022–2023

• Seasonal adjustment, imputation, and forecasting were my

daily bread

• The SA part of this course is an extension of what I had

taught at workshops

• There is a high demand for harmonised time series /
panels in the EU

• Eurostat-endorsed software for processing of

multi-country time series is much more feature-rich and

user-friendly than the U. S. Census software
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Course goals

• Estimate several common time-series model
specifications, including seasonal ones

• Produce, benchmark, and back-test multiple forecasts

• Remove the seasonal component via semi-parametric
and parametric methods

• Diagnose the adequacy of the model and adjustment

• Depending on the time / your preferences:

1. State-space / dynamic factor models and dimensionality

reduction

2. Reconstruction and imputation of multiple times series
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Example: you will be able to do this

Credit: Centre for Macroeconomic Analysis and Short-Term Forecasting.
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...and hopefully (if we have time) this

Credit: Centre for Macroeconomic Analysis and Short-Term Forecasting.
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Intended schedule

Hard must:

1. Basic linear time-series models: theory and practice in R

2. Parametric and non-parametric seasonal adjustment

and quality assessment in JDemetra+

3. Model-free and model-based multiple imputation

techniques for stationary data in R

Stretch goals:

• Dimensionality reduction: dynamic factor models,

principal component analysis

• Combining forecasts and imputations
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Open-source packages for TSA

• JDemetra+

• Java-based, extensible, recommended by Eurostat for SA

• R

• Amazing capabilities for academic research

• ML = maximum likelihood (mostly)

• Python

• Huge choice of packages for data miners and big-data

analysts in the industry

• ML = machine learning (although there is no machine

learning when the sample size is 𝑇 = 25 for Luxembourg!)

• Julia

• Very fast, but not so many packages for custom models
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We shall be using R
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Commercial statistical packages for TSA

• Matlab

• Good for matrix operations and certain parametric models,

inconvenient debugging, inflexible in terms of data

structures

• Stata

• Good for cross-sectional and panel analysis, poor

time-series capabilities, very limited programming features

• EViews

• OK for specifying state-space models, irredeemably

outdated, feature-poor, lacks adequate numerical

methods, no active community, failing statistical methods

• SPSS, SAS, Gauss, Minitab

• De mortuis nil nisi bonum
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What this course is not

• Not econometrics

• But we shall revise the relevant basics and essential

statistics today

• Not quantitative finance, volatility forecasting, portfolio
optimisation

• Yet provides certain relevant knowledge

• Not general signal processing

• Not modelling extra-complicated time series

• We discuss how to reversibly transform ‘irregular’ TS into

‘regular’ ones that are safe to analyse
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What this course is

• Methods that are used at EU statistical bureaus

• Linear and generalised linear methods for TS model

estimation

• Linear filters and additive / multiplicative

decomposition techniques

• Convenient asymptotic approximations even when

‘𝑇 → ∞’ is questionable
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During the course

• 5 days = 5 sessions

• 10-minute break in the middle (grab a coffee)

• Study at home, ask questions about unclear concepts

during the sessions

• Having a laptop is completely optional (you can follow
the screen), but carrying out empirical analysis at least
once in your spare time is a must

• The earlier you spot a problem (e. g. broken Java

installation), the earlier I shall be able to help you
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Syllabus

• Contains the intended agenda

• Contains links to openly published learning resources
(books, online tutorials etc.)

• Extra material will be provided on Moodle

• Your suggestions for learning resources are welcome

• Contains homework descriptions and full final project

proposals
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Bibliography

• Looks scary because it is long

• Everything is on Moodle now

• Contains sources in the order of relevance

• The bare minimum is:

1. Any graduate-level treatment of linear time-series models

(The legendary Box & Jenkins book (5th ed.) is appropriate)

2. Eurostat (2018) ‘Handbook on Seasonal Adjustment’

3. Little & Rubin (2019) ‘Statistical analysis with missing data’
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Grading

• 5 ⋅ 2% attendance + 30% small assignment + 60% project

• The assignment is short: carry out seasonal adjustment
of 2 time series, comment on its adequacy (in a
GUI-based programme with a mouse, no coding
required!)

• Each participant gets their own data set on Moodle

• Final project: choose the task that is the most relevant
for your research or the one that uses the data set that
you know well

• 7 conceptually different tasks to choose from

• You may reuse your existing material in the assignment
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Technical requirements for all assignments

1. Submission: written report + script / source code
applying the empirical methods and reproducing these
results

• I should be able to reproduce these results – attach the

data if they come from elsewhere

• Optional: plots or videos – ZIP everything together

2. Use open-source statistical packages: R and/or

JDemetra+, Python, Julia (or other open-source ones)

3. Write the report in plain text / Markdown / LATEX/ Jupyter
/ knitr / Sweave

• .doc[x] and .odt are not accepted
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If something is missing from this tutorial

• ESS Guidelines on SA (2015 edition)

• European Statistical Training Programme

• Introduction to SA and JDemetra+ – 2024

• 11–13th of June, 2024, Cologne, Germany

• Application deadline: 15th of April, 2024

• ESTP 2021 PowerPoint slides on SA

• Eurostat 2018 handbook on SA (very deep)
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Notational conventions

• Capital italic Latin: scalar and vector random variables

(𝑋, 𝑌); subscript in brackets = coordinate (𝑋(2))
• Capital Roman Latin: non-random matrices (A,V)
• Greek: parameters and numeric constants (𝛽, 𝜃)

• With subscript: true values (𝛽3, 𝜃0)
• With diacritics: estimators (�̂�𝐿𝑆, ̃𝜃), which are random

variables, not constants

• Lowercase Latin: functions (𝑓𝑋,𝑍(𝑢, 𝑣), 𝑔(𝑋, 𝑌, 𝜃)) or their
arguments (𝑓(𝑡)), or unimportant constants (𝑐 = 12)

• A vector 𝑋 is always a column vector, 𝑋′ is a row

(′ means transposition)

• Operators: 𝔼𝑋, Var 𝑋, 𝔼(𝑌 ∣ 𝑋)
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Stationary and non-stationary processes



Time-series samples

The properties of random variables are studied and the

models are estimated in finite samples, i. e. realisations of

random variables collected in periods 𝑡 = 1,… , 𝑇 (we
consider discrete time only).

• 𝑋1, 𝑋2, ..., 𝑋𝑡 is a sequence of non-independent

non-identically-distributed random variables

• The sequence {𝑋𝑡}
𝑇
𝑡=1 can be treated as a multivariate

random variable

• From the economic perspective, we call 𝑋1, 𝑋2,… , 𝑋𝑡 a
time series (or process), where 𝑡 is a discrete (at most

countable) time indicator
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Weak stationarity

Statistical analysis is the easiest when certain aspects of

these random variables are homogeneous: inference

requires somewhat identically (or similarly) distributed RVs.

A weakly second-order-stationary process 𝑌𝑡:

• ∀𝑡, 𝑠: 𝔼𝑌𝑡 = 𝔼𝑌𝑠 = 𝜇
• ∀𝑡, 𝑠: Var 𝑌𝑡 = Var 𝑌𝑠 = 𝜎

2

• ∀𝑡, 𝑠: Cov(𝑌𝑡, 𝑌𝑠) = 𝑓(|𝑡 − 𝑠|), where 𝑓 is some function
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Ergodicity

Problems: only one realisation of a

TS process (cf. cross-sections where

one can collect more observations).
Credit: Box, Jenkins, Reinsel, Ljung (2015).

• WLLN: 𝑛−1 ∑𝑛𝑖=1 𝑋𝑖
ℙ−−−−−→

𝑛→∞
𝔼𝑋 for IID 𝑋𝑖

• In TSA, {𝑋1,… , 𝑋𝑇} = {𝑋𝑡}
𝑇
𝑡=1 are one single realisation of

the RV 𝑋, and (𝑋𝑖, 𝑋𝑗) are not independent

• In a parallel universe, many different realisations of {𝑋𝑡}
𝑇
𝑡=1

could be collected

• Ergodicity: observing only one sequence of non-IID

{𝑋𝑡}
𝑇
𝑡=1 is sufficient for recovering the properties of 𝑋

• Sufficient conditions: Cov(𝑋𝑡, 𝑋𝑡−ℎ)
ℎ→∞−−−−−→ 0 (mean),

∑∞ℎ=0|Cov(𝑋𝑡, 𝑋𝑡−ℎ)| < ∞ (variance)
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Example: white noise

Centred exponential distribution: 𝑓𝑋(𝑡) = 𝜆 exp(−𝜆𝑡 − 1) for
𝑡 > −1/𝜆. One realisation with with 𝜆 = 1:
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𝔼𝑋𝑡 = 0, Var 𝑋𝑡 = 1, Cov(𝑋𝑡, 𝑋𝑠) = 0 for 𝑡 ≠ 𝑠.

Is 𝑋𝑡 stationary? Is 𝑋𝑡 symmetric around the mean?
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Wold decomposition

𝑌𝑡 is a weakly stationary process if and only if it can be

represented in the following form:

𝑌𝑡 = 𝜇0 +
∞

∑
𝑖=0
𝜓𝑖𝑈𝑡−𝑖 + 𝑉𝑡,

where 𝑈𝑡−𝑖 is the white-noise error, 𝜓0 = 1, ∑
∞
𝑖=0𝜓

2
𝑖 < ∞, and

𝑉𝑡 is deterministic and uncorrelated with 𝑈𝑠 for all 𝑠 (and
some other technical conditions).

The error 𝑈𝑡 is the linear forecast error based on all

available information: 𝑈𝑡 ≔ 𝑌𝑡 − BLP(𝑌𝑡 ∣ 𝑌𝑡−1, 𝑌𝑡−2,…).
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Example: mean non-stationarity (1/2)

Suppose that 𝑌𝑡 is growing linearly in time:

𝑌𝑡 = 0.05𝑡 + 𝑈𝑡, 𝔼𝑈𝑡 = 0, Var 𝑈𝑡 = 𝜎
2
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One should de-trend (= de-mean) this trend-stationary

process (or model the mean tendency explicitly).
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Example: mean non-stationarity (2/2)
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One should de-seasonalise (= seasonally adjust) this

seasonal process (or model the seasonality explicitly).

Example above: electricity consumption monthly effects.
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Example: variance non-stationarity
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Suppose that 𝑌𝑡 behaves like market returns and exhibits

volatility clustering:

𝑌𝑡 = √ℎ𝑡𝑈𝑡, ℎ𝑡 = 0.01 + 0.7ℎ𝑡−1 + 0.25𝑌𝑡−1

Conditional heteroskedasticity should be modelled.
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Example: covariance non-stationarity
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Cov(𝑋𝑡, 𝑋𝑡−ℎ) must be a function of ℎ only (not of 𝑡).
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Eyeballing stationarity

Always look at the input series before applying statistical

techniques developed for (put the type here) processes!

• Mean stationarity: if the horizontal level of the series

systematically drifts away vertically, the series is not

mean-stationary

• Variance stationarity: if the ‘tube width’ around the

series is variable (looks like pulsations), the series is not

variance-stationary

• Covariance stationarity: if the frequency of mean

crossings changes substantially in time, the series is not

covariance-stationary

Rejections are more informative than non-rejections.
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Example: CO2 concentration (parts per mln)

Data set in R: datasets::co2
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Example: S&P500 monthly returns

Data set in R: tidyquant::tq_get("SPY")

20
08

20
10

20
12

20
14

20
16

20
18

20
20

20
22

20
24

−0.075

−0.050

−0.025

0.000

0.025

Topics in time-series analysis. © Andreï V. Kostyrka, Université du Luxembourg, 2024 33 / 87



Statistical theory for TSA



Chaotic vs. stochastic models

Can someone explain the difference?

• Chaotic = deterministic (surprise!), complex, irregular,
non-linear, exhibiting patterns (attractors)

• Butterfly effect: sensitive to initial conditions

• No randomness (Laplace’s demon)

• Stochastic = random, linear or non-linear, simple or
complex, regular or irregular, without any guarantee of
patterns

• The influence of the initial condition fades away
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Parametric vs. semi-parametric models

• Fully parametric

• Fully non-parametric

• Partially parametric, partially non-parametric

(semi-parametric)

Fully parametric model example:

𝑌 = 𝛼 + 𝑋′𝛽 + 𝑈, 𝑈 ∣ 𝑋 ∼ 𝒩(0, 𝜎2)

Fully non-parametric model example:

𝑌 = 𝑓(𝑋) + 𝑈, 𝔼(𝑈 ∣ 𝑋) = 0, 𝑓 is unknown

Semi-parametric model example:

𝑌 = 𝛼 + 𝑋′𝛽 + 𝑈, 𝔼(𝑈 ∣ 𝑋) = 0
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Parametric density

We may specify the conditional density of the model error

given the observables (𝑌, 𝑋, 𝜃): ‘Everything that the model

does not capture is, e. g., Gaussian!’
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Normal(0, 1)
Chi-squared(df=3)
Student(df=2)
Exp(rate=0.5)

• Simplifies estimation and inference

• A huge leap of faith (but sometimes, the necessary evil)
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Density function

Probability density function (PDF) of RV 𝑋: such a

non-negative function 𝑓𝑋(𝑡) that its integral over any area 𝐴
yields the probability that 𝑋 ∈ 𝐴.

Consequence: ∫ℝdim𝑋 𝑓𝑋(𝑡)d𝑡 = 1.

Univariate Gaussian (normal) density:

𝑓𝒩(𝜇,𝜎2)(𝑡) ≔
1

√2𝜋𝜎2
exp (−

(𝑡 − 𝜇)2

2𝜎2
)

ℙ(standard Gaussian ∈ [1.5, 2.5]):
∫2.51.5 𝑓𝒩(0,1)(𝑡) ≈ 6.06%

−3 −2 −1 0 1 2 3

Topics in time-series analysis. © Andreï V. Kostyrka, Université du Luxembourg, 2024 37 / 87



Moments of random variables

𝑚th moment = the mean of the 𝑚th power of 𝑋

𝜇𝑚 ≔ 𝔼𝑋
𝑚 = ∫

ℝ
𝑡𝑚𝑓𝑋(𝑡)d𝑡

• 𝜇1 = 𝔼𝑋, mean, is the first moment

• 𝜇2 = 𝔼𝑋
2

• 𝔼𝑋2 − 𝜇21 = Var 𝑋 = 𝜎
2 = 𝔼(𝑋 − 𝜇1)

2, i. e. variance is the

second central moment

• Cross-moments: Cov(𝑋, 𝑌) ≔ 𝔼[(𝑋 − 𝔼𝑋)(𝑌 − 𝔼𝑌)]

• Skewness: 𝔼(𝑋−𝜇1𝜎 )3, kurtosis: 𝔼(𝑋−𝜇1𝜎 )4

Moments can be infinite:

for a Student(𝜈) RV, 𝔼|𝑋|𝑘 < ∞ for 𝜈 > 𝑘.
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Auto-covariance function

For weakly stationary processes,

𝛾(ℎ) ≔ Cov(𝑋𝑡, 𝑋𝑡+ℎ) = 𝔼[(𝑋𝑡 − 𝜇)(𝑋𝑡+ℎ − 𝜇)]

is the auto-covariance function.

• 𝛾(ℎ) = 𝛾(−ℎ)
• 𝛾(0) ≥ 𝛾(ℎ)
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Auto-correlation function

Pearson’s linear correlation:

𝜌(𝑋, 𝑌) ≔
Cov(𝑋, 𝑌)

√Var 𝑋 ⋅ Var 𝑌

Auto-correlation:

𝜌(ℎ) ≔ Cor(𝑋𝑡, 𝑋𝑡+ℎ) =
Cov(𝑋𝑡, 𝑋𝑡+ℎ)

√Var 𝑋𝑡 ⋅ Var 𝑋𝑡+ℎ
=
𝛾(ℎ)
𝛾(0)

Remember: −1 ≤ 𝜌(ℎ) ≤ 1.
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Method of moments (MM)

Under certain regularity conditions (necessary for the WLLN

and CLT), population parameters can be estimated by

sample averages.

Replace integrals in expectations with sums:

• 𝔼𝑋 = 𝜇 ⟺ ∫ℝ(𝑡 − 𝜇)𝑓𝑋(𝑡)d𝑡 = 0 becomes
1
𝑇 ∑

𝑇
𝑡=1(𝑋𝑡 − 𝜇) = 0 ⇒ �̂� = 1

𝑇 ∑
𝑇
𝑡=1 𝑋𝑡

• Var 𝑋 = 𝜎2 ⟺ ∫ℝ(𝑡 − 𝜇)
2𝑓𝑋(𝑡)d𝑡 = 𝜎

2 becomes
1
𝑇 ∑

𝑇
𝑡=1(𝑋𝑡 − 𝜇)

2 = 𝜎2 ⇒ �̂�2 = 1
𝑇 ∑

𝑇
𝑡=1(𝑋𝑡 − �̂�)

2
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Mean estimation

We are interested in the first moment (theoretical /

population mean) of 𝑋, 𝔼𝑋.

We collected 5 observations {𝑋𝑡}
𝑇
𝑡=1 = {15, 22, 13, 11, 24}.

Then, �̂� = 1
5

5
∑
𝑡=1
𝑋𝑡 =

85
5 = 17 is the MM estimate of the mean.

This estimator can be plugged in wherever the explicit

expression for the theoretical mean appears.
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Variance estimation

{𝑋𝑡}
𝑇
𝑡=1 = {15, 22, 13, 11, 24}, �̂� = 17.

Since �̂� has already been estimated independently through

the first moment equation in the MM approach,

𝔼(𝑋 − 𝔼𝑋)2 = 𝜎2

becomes in finite samples

�̂�2 = 1
5∑𝑡

(𝑋𝑡 − �̂�)
2 = 130

5
= 26
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Properties of (co-)variances

• For vector random variables,

Cov(𝑋, 𝑌) = 𝔼(𝑋 − 𝔼𝑋)(𝑌 − 𝔼𝑌)′

• Cov(𝑋, 𝑋) = Var 𝑋
• Var(𝑋 ± 𝑌) = Var 𝑋 + Var 𝑌 ± Cov(𝑋, 𝑌) ± Cov(𝑌, 𝑋)
• Var 𝛼𝑋 = 𝛼2 Var 𝑋
• VarA𝑋 = A(Var 𝑋)A′
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Variance of the sample average

�̂� = 1
𝑇

𝑇
∑
𝑡=1
𝑋𝑡, the sample average is an estimator of the mean.

Var �̂� = Var 1
𝑇

𝑇

∑
𝑡=1
𝑋𝑡 =

1
𝑇2

𝑇

∑
𝑡=1
Var 𝑋𝑡 +

2
𝑇2 ∑𝑠<𝑡

Cov(𝑋𝑡, 𝑋𝑠)

• IID: Var 𝑋𝑡 = 𝜎
2, Cov(𝑋𝑡, 𝑋𝑠) = 0 for 𝑡 ≠ 𝑠 ⇒ �Var �̂� = �̂�2

𝑇

• INID: Var 𝑋𝑡 = 𝜎
2
𝑡 , hence, one estimator of Var �̂� is

1
𝑇2

𝑇
∑
𝑡=1
(𝑋𝑡 − �̂�)

2 = 1
𝑇
�VarMM𝑋𝑡 =

�̂�2
𝑡 (NB: 𝜎2 is purely cerebral)

• NINID: cleverly estimate the non-zero covariances by
imposing a structure

• Cross-sectional⇒ spatial correlations with block matrices

• Temporal⇒ auto-correlations with spectral methods

This forms the basis of consistent VCOV estimation!
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Higher moment estimation pitfalls

Estimation of 2nd and higher moments is tricky, and MM /

ML can yield consistent yet biased estimators that perform

poorly in small samples.

Example. The MM variance

estimator, the average squared

deviation from a constant,
1
𝑇 ∑𝑡(𝑋𝑡 − 𝜃)

2, is always minimised

(w. r. t. 𝜃) at �̂� = �̄�𝑇.
The true Var 𝑋, i. e. the expected

squared deviation from the true

𝔼𝑋, is higher than the MM estimate

with probability 1!
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Finite-sample calibration

Uncertainty is always under-estimated, typically by some

factor of order 𝑇−1 ⇒ some form of finite-sample

calibration is recommended.

• Use conservative variance estimators that are not
biased downwards

• Use 𝑇
𝑇−1 ⋅ �̂�

2
MM =

1
𝑇−1 ∑𝑡(𝑋𝑡 − �̂�)

2 for �Var 𝑋

• Use more conservative critical values for inference

• In the past, researchers would use Student-𝑡 or Fisher’s 𝐹
critical values (distributions with fatter tails)

• These days, researchers prefer Bartlett correction and/or

bootstrap calibration and/or empirical-likelihood-based

inference
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Covariance estimation

𝔼[(𝑋 − 𝔼𝑋)(𝑌 − 𝔼𝑌)] ⇒ use
1
𝑇

𝑇

∑
𝑡=1
(𝑋𝑡 − �̄�𝑇)(𝑌𝑡 − �̄�𝑇)

Auto-covariance Cov(𝑋𝑡, 𝑋𝑡−ℎ) MM estimator:

�̂�(ℎ) = 1
𝑇 − ℎ

𝑇

∑
𝑡=ℎ+1

(𝑋𝑡 − �̄�𝑇)(𝑋𝑡−ℎ − �̄�𝑇)

Auto-correlation Cor(𝑋𝑡, 𝑋𝑡−ℎ) MM estimator:

�̂�(ℎ) =
�̂�(ℎ)
�̂�(0)

=
(𝑇 − ℎ)−1 ∑𝑇𝑡=ℎ+1(𝑋𝑡 − �̄�𝑇)(𝑋𝑡−ℎ − �̄�𝑇)

𝑇−1 ∑𝑇𝑡=1(𝑋𝑡 − �̄�𝑇)2

NB. Multiple finite-sample alternative estimators are

possible, e. g., the MM estimator of 𝔼𝑋𝑡−ℎ may use only the

last 𝑇 − ℎ points, or the 𝑇
𝑇−1 factor can be added to �̂�(0).
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Linear models

𝑌 = 𝛼 + 𝛽1𝑋1 +… + 𝛽𝑘𝑋𝑘 + 𝑈

Compact notation:

𝑌 = ̃𝑋′𝜃 + 𝑈, ̃𝑋 ≔ (1 𝑋1 … 𝑋𝑘)
′, 𝜃 ≔ (𝛼 𝛽1 … 𝛽𝑘)

′

Exogeneity assumption: 𝔼(𝑈 ∣ 𝑋) = 0.

No parametric assumption about the conditional

distribution 𝑓𝑌∣𝑋,𝜃 ⇒ this model is semi-parametric.

If we specify that 𝑌 ∣ 𝑋 ∼ 𝒩( ̃𝑋′𝜃, 𝑣(𝑋)) for a specified 𝑣(⋅) > 0,
or 𝑌− ̃𝑋′𝜃

𝜎 ∣ 𝑋 ∼ 𝑡5, then, this specification becomes

parametric.
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Causal interpretation

FUELSALES = 𝛽0 + 𝛽1PLux + 𝛽2Pabroad
+ 𝛽3COMMUTERS + 𝛽4COVID + 𝑈

• ∂
∂Pabroad

FUELSALES = 𝛽2 +
∂

∂Pabroad
𝑈

• Causal interpretation: one variable changes, all others
(including the error!) remain constant

• If the foreign fuel price changes by 1 Euro, fuel sales will

change by 𝛽2 units ceteris paribus
• ∂
∂Pabroad

𝑈 = 0 is our exogeneity assumption
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Conditional density

Suppose that in a model, we know the joint distribution of

(𝑌, 𝑋). For simplicity, assume continuous distributions

𝑓𝑌,𝑋(𝑦, 𝑥).

Conditional density – as if 𝑋 were not random, i. e. took a

specific value:

𝑓𝑌∣𝑋=𝑥(𝑦) =
𝑓𝑌,𝑋(𝑦, 𝑥)
𝑓𝑋(𝑥)

Sometimes, we may not know 𝑓𝑌,𝑋 at all – but we can

assume a specific conditional distribution 𝑓𝑌∣𝑋=𝑥(𝑦) directly.
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Conditional density example

Linear model with zero-mean heteroskedastic error:

𝔼(𝑈 ∣ 𝑋) = 0, 𝔼𝑈 = 0, Var(𝑈 ∣ 𝑋) = 4(𝑋 + 1)2:

𝑌 = 1 + 1 ⋅ 𝑋 + 𝑈, 𝑋 ∼ exp(0.5), 𝑈
𝑋 + 1

+ 3 ∼ 𝜒23
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Conditional distribution: 𝑌 ∣ 𝑋, 𝜃 ∼ 𝑌−𝜃(1)−𝜃(2)𝑋
𝑋+1 + 3 ∼ 𝜒23|𝜃=𝜃0.
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Does the error distribution matter?

Consider a general non-linear model with additive errors:

𝑌 = ℎ(𝑋, 𝜃0) + 𝑈

• In some models, 𝔼(𝑈 ∣ 𝑋) = 0 alone is sufficient to allow

the estimation of parameters

• In some models (especially non-linear ones with a
limited dependent variable), knowledge of the
conditional density PDF𝑌∣𝑋 is required

• It is unknown, but the researcher can assume 𝑓𝑌∣𝑋,𝜃
• The marginal distribution of 𝑋 is uninformative about 𝜃

• Sometimes, the results coincide; sometimes, they do not
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Linear time-series model

estimation and inference



Estimation paradigms

1. Maximise some goodness-of-fit measure

2. Minimise some discrepancy measure

However, all of them can be characterised as

minimum-distance methods:

• OLS: minimise the Euclidean norm of the residual vector

• GMM: minimise the distance between the average

moment function and zero

• ML: minimise the Kullback–Leibler divergence

Approaches may turn out to be equivalent: in a linear

model, minimising the sum of squared residuals =

maximising the Gaussian likelihood = maximising 𝑅2.
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Estimators used in applied economics

Since everything is a minimum-distance estimator, consider

the problem of ‘solving’ some useful economic model by

‘finding’ some ‘optimal’ parameters 𝜃 using data {𝑍𝑖}
𝑛
𝑖=1:

�̂� ≔ argmin
𝜃

𝑠(ℓ(𝑍1, 𝜃),… , ℓ(𝑍𝑛, 𝜃))

• ℓ: loss function (𝑥2 for OLS, |𝑥| for LAD, minus likelihood

for ML, high-breakdown-point losses…)

• 𝑠: aggregating statistic (average, trimmed average,

weighted average, median, quantile …)

OLS: minimising the sum = minimising the average because

argmin𝜃 ∑𝑖(𝑌𝑖 − 𝑋
′
𝑖𝜃)2 = argmin𝜃

1
𝑛 ∑(𝑌𝑖 − 𝑋

′
𝑖𝜃)2.
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OLS estimator of linear model parameters

Suppose that the researcher collected a random sample of

cross-sectional data, i. e. IID observations {(𝑌𝑖, 𝑋𝑖)}
𝑛
𝑖=1.

𝑌𝑖 = ̃𝑋′𝑖𝜃0 + 𝑈𝑖, 𝑖 = 1,… , 𝑛

Then, the ordinary least-squares (OLS) estimator is:

�̂�LS ≔ (
1
𝑛

𝑛

∑
𝑖=1

̃𝑋𝑖 ̃𝑋′𝑖
�����������

MM estimator of 𝔼 ̃𝑋 ̃𝑋′

)
−1

(1
𝑛

𝑛

∑
𝑖=1

̃𝑋𝑖𝑌
���������

MM estimator of 𝔼 ̃𝑋𝑌

),

where 𝜃0 ≔ (𝔼 ̃𝑋 ̃𝑋′)−1𝔼 ̃𝑋𝑌.
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OLS intuition

�̂�LS = argmin
𝜃

1
𝑛

𝑛

∑
𝑖=1
(𝑌𝑖 − ̃𝑋′𝑖𝜃)2

�̂�LS = argmin
𝜃

�Var (𝑌𝑖 − ̃𝑋′𝑖𝜃) 0 1 2 3 4 5

0
5

10

X

Y

OLS fit
True law

• The OLS estimator is the minimiser of the unconditional
error variance
• The variance of OLS residuals, �̂� ≔ 𝑌 − ̃𝑋′�̂�LS, around the

fitted hyper-plane is the smallest

• ̃𝑋′�̂�LS is the best linear predictor (BLP) of 𝑌 given 𝑋
• ̃𝑋′�̂�LS is the projection of 𝑌 onto the linear space of 𝑋
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OLS estimator variance (HC)

Randomness in �̂�LS = discrepancy between the means and

sample averages: �̂�LS = 𝜃0 + (
1
𝑛 ∑

𝑛
𝑖=1

̃𝑋𝑖 ̃𝑋′𝑖 )
−1(1𝑛 ∑

𝑛
𝑖=1

̃𝑋𝑖𝑈𝑖).

Without making any distributional assumptions, analyse

Var �̂�LS = Var[(
1
𝑛 ∑

𝑛
𝑖=1

̃𝑋𝑖 ̃𝑋′𝑖 )
−1(1𝑛 ∑

𝑛
𝑖=1

̃𝑋𝑖𝑈𝑖)].

Applying VarA𝑋 = A(Var 𝑋)A′, using the IID assumption

(covariances are zero⇒ Var∑ = ∑Var) and
Var 𝑋 = 𝔼(𝑋 − 𝔼𝑋)(𝑋 − 𝔼𝑋)′:

Var �̂�LS =
1
𝑛
(1
𝑛

𝑛

∑
𝑖=1

̃𝑋𝑖 ̃𝑋′𝑖 )
−1
(1
𝑛

𝑛

∑
𝑖=1

̃𝑋𝑖 ̃𝑋′𝑖𝑈
2
𝑖 )(
1
𝑛

𝑛

∑
𝑖=1

̃𝑋𝑖 ̃𝑋′𝑖 )
−1

Replacing 𝑈𝑖 with �̂�𝑖 yields �Var �̂�LS, the famous White’s

heteroskedasticity-consistent VCOV estimator (HC0).
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Regression with time-series data

Task: estimate the average slope of the Phillips curve in

Luxembourg for 2010–2023. Can we still do it via OLS?
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Hint: does anything change in the algebra?
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OLS with time-series data

There are observations {(𝑌𝑡, 𝑋𝑡)}
𝑇
𝑡=1.

𝑌𝑡 = ̃𝑋′𝑡𝜃 + 𝑈𝑡, 𝑡 = 1,… , 𝑇

Then, the ordinary least-squares (OLS) estimator is:

�̂�LS ≔ (
1
𝑇

𝑇

∑
𝑡=1

̃𝑋𝑡 ̃𝑋′𝑡 )
−1
(1
𝑇

𝑇

∑
𝑡=1

̃𝑋𝑡𝑌𝑡)

Is it consistent, though?

• As long as the model is correctly specified, 𝔼(𝑈 ∣ 𝑋) = 0,
or at least 𝔼𝑈 = 𝔼𝑈𝑋 = 0 (this is the first-order condition)

Topics in time-series analysis. © Andreï V. Kostyrka, Université du Luxembourg, 2024 60 /87



Example: Phillips curve

Task: estimate the average slope of the Phillips curve in

Luxembourg for 2010–2023.
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Same �̂�LS as if there were no time dependence.
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OLS estimator variance complication

Var �̂�LS = Var[(
1
𝑇 ∑

𝑇
𝑡=1

̃𝑋𝑡 ̃𝑋′𝑡 )
−1(1𝑇 ∑

𝑇
𝑡=1

̃𝑋𝑡𝑈𝑡)].

The complications for inference are due to the fact that

Var(1𝑇 ∑
𝑇
𝑡=1

̃𝑋𝑡𝑈𝑡) depends on all the covariances

(𝑋𝑡𝑈𝑡, 𝑋𝑠𝑈𝑠) ∀𝑡, 𝑠 = 1,… , 𝑇!

Solution 1 (bad): since for stationary processes, the

auto-covariance depends only on the lag, estimate all

Cov(𝑋𝑡�̂�𝑡, 𝑋𝑠�̂�𝑠) empirically and plug those covariances.

Why it is bad: in finite samples, it may not be positive

semi-definite. In addition, it is very noisy, and there are

𝑇2 unknowns!
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OLS estimator variance (HAC)

Recall that for weakly stationary processes,

(1) Cov(𝐴𝑡, 𝐴𝑡+ℎ) = 𝑓(|ℎ|) and (2) 𝑓(|ℎ|) ℎ→∞−−−−−→ 0.
Use (1) to reduce the number of estimands from 𝑇2 to 𝑇 and
(2) to forcibly downweight / zero out long covariances.

Ideas (Newey & West, 1987):

1. Var 1𝑇 ∑
𝑇
𝑡=1 𝐴𝑡 =

1
𝑇2 ∑

𝑇
𝑡=1 Var 𝐴𝑡 +

2
𝑇2 ∑

𝑇−1
ℎ=1(𝑇 − ℎ) Cov(𝐴𝑡, 𝐴𝑡+ℎ)

2. Estimate only a fraction ∼ 3√𝑇 of covariances

3. Add 𝑤(|ℎ|) ℎ→∞−−−−−→ 0

�Var �̂�LS =
1
𝑇
(1
𝑇

𝑇

∑
𝑡=1

̃𝑋𝑡 ̃𝑋′𝑡 )
−1
(1
𝑇

𝑇

∑
𝑡,𝑠=1

𝑤(|𝑡−𝑠|) ̃𝑋𝑡 ̃𝑋′𝑠�̂�𝑡�̂�𝑠)(
1
𝑇

𝑇

∑
𝑡=1

̃𝑋𝑡 ̃𝑋′𝑡 )
−1
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Pitfalls of HAC estimation

Popular kernel functions 𝑤(|ℎ|): Bartlett (triangular),
quadratic spectral (∼ sin(ℎ)/ℎ2), truncated (𝕀(ℎ ≤ ℎ∗)).
Procedures for auto-choice of the scaling bandwidth are

available in software (Andrews 1991, Newey & West 1994).

But! These estimators are much less reliable because they

depend on many tuning parameters.

Discordant standard errors are to be expected even with

‘nice’ stationary input series.

Resampling (e. g. bootstrap) easily yields HC variances, but

with dependent observations, HAC-consistent bootstrap

also depends on tuning parameters.
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Distributed lags

Can we add lags of 𝑋𝑡 as explanatory variables?

𝑌𝑡 = 𝛽0 + 𝛽
′
1𝑋𝑡 + 𝛽

′
2𝑋𝑡−1 + 𝑈𝑡, 𝔼(𝑈 ∣ 𝑋𝑡, 𝑋𝑡−1) = 0

Example: reversal effect if 𝛽1 = 0.7, 𝛽2 = −0.2 (the more one

consumes today, the less they consume tomorrow).

Problem: if there is strong persistence in 𝑋𝑡, then, it is hard
to distinguish the separate effects of 𝑋𝑡 and 𝑋𝑡−1, which is

called poor identification.

Solutions:

• Re-parametrise the model, carry out a linear

transformation, use 𝑋𝑡 and 𝑋𝑡 − 𝑋𝑡−1 as regressors
• Put economic constraints (e. g. |𝛽1| ≥ |𝛽2|, or 3 ⋅ 𝛽2 = 𝛽1)
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Specification re-thinking
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Multiple distributed lags

What if there are effects that are more distant in time?

𝑌𝑡 = 𝛽0 + 𝛽
′
1𝑋𝑡 + 𝛽

′
3𝑋𝑡−3 + 𝛽

′
4𝑋𝑡−4 + 𝑈𝑡, 𝔼(𝑈 ∣ 𝑋𝑡,… , 𝑋𝑡−4) = 0

Example: multi-year

cattle cycles; 3–4 years

for pork, 8–12 years for

beef (Rosen, Murphy,

Scheinkman, 1994, JPE).

Same OLS algebra

(assuming correct

specification).
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Auto-regression

Can we add 𝑌𝑡’s own lags as explanatory variables?

AR(1) process:

𝑌𝑡 = 𝜇0 + 𝜑1𝑌𝑡−1 + 𝑈𝑡, 𝔼(𝑈 ∣ 𝑌𝑡−1) = 0

AR(𝑝) process:

𝑌𝑡 = 𝜇0 + 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 +… + 𝜑𝑝𝑌𝑡−𝑝 + 𝑈𝑡,

𝔼(𝑈 ∣ 𝑌𝑡−1,… , 𝑌𝑡−𝑝) = 0

Stationary auto-regressive processes usually have

extremely short memory. For AR(1),

Cor(𝑌𝑡, 𝑌𝑡−1) = Cor(𝜇0 + 𝜑1𝑌𝑡−1 + 𝑈𝑡, 𝑌𝑡−1) = 𝜑1 ∈ (−1, 1)
(exponential decay).
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Auto-regression and distributed lag (ARDL)

We can combine two specifications: 𝑌𝑡 can be explained by

its past and other contemporaneous and lagged variables.

𝑌𝑡 = 𝜇0 +
𝑝

∑
𝑖=1
𝜑𝑖𝑌𝑡−𝑖 +

𝑞

∑
𝑗=0
𝑋′𝑡−𝑗𝛽𝑗 + 𝑈𝑡

𝔼(𝑈 ∣ 𝑌𝑡−1,…,𝑝, 𝑋𝑡−0,…,𝑞) = 0

How can such models be estimated? OLS (all these

variables are observed). Define

̃𝑋 ≔ (1, 𝑌𝑡−1,… , 𝑌𝑡−𝑝, 𝑋𝑡, 𝑋𝑡−1,… , 𝑋𝑡−𝑞)
′

and apply standard OLS matrix algebra.
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Moving-average processes

Recall the Wold decomposition for stationary processes:

𝑌𝑡 = 𝜇0 +
∞

∑
𝑖=0
𝜓𝑖𝑈𝑡−𝑖 + 𝑉𝑡

Assume that only the immediate past is of interest –

consider a moving-average process, MA(𝑞):

𝑌𝑡 = 𝜇0 + 𝑈𝑡 + 𝜃1𝑈𝑡−1 +… + 𝜃𝑞𝑈𝑡−𝑞 + 𝜀𝑡

How can one estimate 𝜃? Not by OLS, since 𝑈𝑡 are
unobserved! (We handle this case soon.)
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Auto-regression andmoving average (ARMA)

We can combine two specifications: 𝑌𝑡 can be explained by

its past, and the error term can exhibit persistence.

𝑌𝑡 = 𝜇0 + 𝑈𝑡 +
𝑝

∑
𝑖=1
𝜑𝑖𝑌𝑡−𝑖 +

𝑞

∑
𝑗=1
𝜃𝑗𝑈𝑡−𝑗

• Promoted by Box and Jenkins (1970)

• No external regressors are needed (assuming that the

past is informative about the future)

• Often out-performs complex structural models
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Seasonal AR models

Some phenomena exhibit

quasi-cyclical behaviour, usually

related to the Earth rotation or

cobweb effect.

Cycle length: 𝑐 = 4 for quarterly,

𝑐 = 12 for monthly data.
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Cyclicalities can be (at least partially) captured by

𝑌𝑡 = 𝜇0 + 𝜑1𝑌𝑡−1 + 𝜑𝑐𝑌𝑡−𝑐 + 𝑈𝑡
Estimable by OLS.
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Seasonal ARMA models

We can add seasonal lags to ARMA models.

𝑌𝑡 = 𝜇0 + 𝑈𝑡 +
𝑝

∑
𝑖=1

𝑖 mod 𝑐≠0

𝜑𝑝𝑌𝑡−𝑖 +
𝑞

∑
𝑗=1

𝑗 mod 𝑐≠0

𝜃𝑗𝑈𝑡−𝑗

�����������������������������
non-seasonal part

+
𝑝𝑠

∑
𝑖=1
𝜑𝑖⋅𝑐𝑌𝑡−𝑖𝑐 +

𝑞𝑠

∑
𝑗=1
𝜃𝑗⋅𝑐𝑈𝑡−𝑗𝑐

�����������������������������������
seasonal part

𝑐 is the cycle length.

• Rarely anything with more than two lags is used

• Notation: SARMA(𝑝, 𝑞)(𝑝𝑠, 𝑞𝑠)
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What is a good TS model?

• ARMA processes do not exist in real life and are used

merely as convenient approximations

• Modelling assumption: 𝑈𝑡 is white noise⇒ ‘residuals

look like white noise’ is good enough

• Plato’s cave: the world cannot be learned using linear

models with imprecise data; we are like the ER doctors,

slapping on a plaster and calling it a day

• Occam’s razor: explanations that posit fewer entities are

to be preferred

Topics in time-series analysis. © Andreï V. Kostyrka, Université du Luxembourg, 2024 74 / 87



Maximum likelihood

With the help of providence, assume some convenient and

flexible parametric density 𝑓𝑌∣𝑋;𝜃. It is known up to 𝜃 –

suppose that exists 𝜃0 such that 𝑓𝑌∣𝑋;𝜃0 is the true law (and

a couple of technical assumptions).

Then, 𝜃0 can be estimated by maximising the expected

logarithm of the conditional density:

𝜃0 = argmax
𝜃

𝔼 log 𝑓𝑌∣𝑋;𝜃(𝑌)

Given data {(𝑌𝑡, 𝑋𝑡)}
𝑇
𝑡=1:

�̂�ML ≔ argmax
𝜃

1
𝑇

𝑇

∑
𝑡=1
log 𝑓𝑌𝑡∣𝑋𝑡;𝜃(𝑌𝑡) = argmax𝜃

𝑇

∏
𝑡=1

𝑓𝑌𝑡∣𝑋𝑡;𝜃(𝑌𝑡)
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Maximum likelihood intuition

Assuming that unknown 𝜃 defines a data-generating process

(model), which value of 𝜃 most likely generated our data?

Example: distribution fitting. Find such (𝜇, 𝜎2) that would
generate a Gaussian curve with the highest average

log-likelihood for IID {𝑌𝑡}
5
𝑡=1 = {−0.8,−0.6, 0.2, 0.3, 1.6}.
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5 ∑

5
𝑡=1 log 𝑓𝒩(0,1)(𝑌𝑡) = −1.3 >

1
5 ∑

5
𝑡=1 log 𝑓𝒩(1,0.5)(𝑌𝑡) = −3.1
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Maximum likelihood fitting

• Assume a conditional density function 𝑡 ↦ 𝑓𝑌∣𝑋;𝜃(𝑡) that
fully describes the model

• Re-interpret it as a likelihood function 𝜃 ↦ 𝑓𝑌∣𝑋;𝜃(𝑌)

�̂�ML ≔ argmax
𝜃

1
𝑇

𝑇

∑
𝑡=1
log 𝑓𝑌𝑡∣𝑋𝑡;𝜃(𝑌𝑡) ≔ argmax𝜃

1
𝑇
ℒ𝑇(𝜃)

• Find �̂�ML as the average log-likelihood maximiser

• Solve the FOC 1
𝑇 ∑

𝑇
𝑡=1 ∇𝜃ℒ𝑇(𝜃) whilst praying that this

problem is well-behaved (the global maximum of ℒ𝑇(𝜃)
exists and is unique; ℒ𝑇 is smooth in 𝜃)

• Use any reasonable numerical optimisation technique

(recommendation: stochastic, then gradient-based)
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Maximum likelihood testing

1. Estimate a model without restrictions⇒ get ℒ(�̂�UR)
2. Fix 𝑘 hypothesised parameter values / impose 𝑘

constraints and estimate a restricted model w. r. t.

remaining parameters⇒ get ℒ(�̂�R)

Then, if ℋ0 : ‘the constraints hold’ is true,

2[ℒ(�̂�UR) − ℒ(�̂�R)]
𝑑−−−−−→

𝑇→∞
𝜒2𝑘

The LR test requires two estimations (unrestricted and

restricted), but is universally most powerful (UMP, i. e.

detects deviations from the null) for point hypotheses.

We skip the Wald and Lagrange-multiplier tests.
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Equivalence: ML and OLS

Consider a linear regression model:

𝑌𝑡 = ̃𝑋′𝑡𝜃 + 𝑈𝑡, 𝔼(𝑈 ∣ 𝑋) = 0

�̂�LS ≔ argmin
𝜃

1
𝑇

𝑛

∑
𝑡=1
(𝑌𝑡 − ̃𝑋′𝑡𝜃)

2

Add the normality assumption: 𝑈 ∣ 𝑋 ∼ 𝒩(0, 𝜎2):

(�̂�ML, �̂�
2
ML) ≔ argmax

𝜃,𝜎2

1
𝑇

𝑛

∑
𝑡=1
log ( 1

√2𝜋𝜎2
exp (−

(𝑌𝑡 − ̃𝑋′𝑡𝜃)
2

2𝜎2
))

Claim. �̂�LS ≡ �̂�ML in this case.
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Avoid unnecessary assumptions (1/2)
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OLS works well (is consistent) for correctly specified models

(𝔼(𝑈 ∣ 𝑋) = 0) even if 𝑈 ∣ 𝑋 is non-Gaussian (e. g. has heavier

tails).
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Avoid unnecessary assumptions (2/2)
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OLS works well (is consistent) for correctly specified models

(𝔼(𝑈 ∣ 𝑋) = 0) even if 𝑈 ∣ 𝑋 is asymmetric.
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ML under the wrong model

Suppose that the true conditional density is 𝑓𝑌𝑡∣𝑋𝑡,𝜃0 but
instead, one assumes 𝑔𝑌𝑡∣𝑍𝑡,𝜃0.

Example: assuming normality where it is clearly violated.

Can 𝜃0 be estimated consistently by maximising the wrong

likelihood?

• In the general case, �̂�ML converges to the parameter of

the closest model (i. e. the wrong one)⇒ bias,

inconsistency, inefficiency

• Some estimates are robust to mis-specification, and the

estimator variance can be consistently estimated using

the sandwich formula due to White (1982)
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Equivalence: ML and robust regression

Researchers in finance often assume

‘heavy tails’ and non-zero probabilities

of extreme events and work with data

containing influential observations. −20 −10 0 10 20

0
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Assuming the Student-𝑡 error distribution and maximising

the Student-𝑡 log-likelihood is the same as minimising the

robust penalty 1
𝑇 ∑

𝑇
𝑡=1 log(1 +

𝑈(𝑌𝑡,𝑋𝑡,𝜃)
2

𝛿1
)𝛿2 for some chosen

𝛿1, 𝛿2 > 0.

ML estimation is more popular in risk modelling than

minimising Huber-like penalties that grow slower than the

quadratic OLS penalty.
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Arbitrary parametric densities

Feel free to assume any parametric conditional density /

joint distribution that is common in the field.

At least try something more flexible than the Gaussian

distribution.
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Skew-Student distribution

Fernandez & Steel (1998) proposed generalising any

distribution to account for asymmetry and heavy tails.

• Take any unimodal density 𝑓𝑋(𝑡) symmetric around 0

• Rescale its left part by 𝛾 > 0 and the right by 1/𝛾:
𝑓𝑋∗(𝑡) ≔

2
𝛾+1/𝛾 [𝑓𝑋(𝑡/𝛾)𝕀(𝑡 ≥ 0) + 𝑓𝑋(𝛾𝑡)𝕀(𝑡 < 0)]

• Re-centre and re-normalise if necessary to match the

moments of the original distribution

• Drawback: less numerically stable (solution: use fixed 𝛾)

-6 -4 -2 0 2 4 6 8

γ = 0.6
γ = 1
γ = 2.7

Density

-6 -4 -2 0 2 4 6 8

γ = 0.6
γ = 1
γ = 2.7

Log-density

Topics in time-series analysis. © Andreï V. Kostyrka, Université du Luxembourg, 2024 85 /87



ML estimation of AR(p) models

𝑌𝑡 = 𝜇0 + 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 +… + 𝜑𝑝𝑌𝑡−𝑝 + 𝑈𝑡
Assuming 𝑈𝑡/𝜎 ∼ 𝒩(0, 1), denoting 𝜙 the PDF of 𝒩(0, 1):

𝑈𝑡(𝜃0) = 𝑌𝑡 − 𝜇0 −
𝑝

∑
𝑖=1
𝜑𝑖𝑌𝑡−𝑖

log 𝑓𝑌𝑡∣𝑌𝑡−1,…;𝜃 = log𝜙(𝑈𝑡(𝜃)/𝜎)/𝜎

Maximise 1
𝑇 ∑

𝑇
𝑡=𝑝+1 log

1
𝜎𝜙(𝑈𝑡(𝜃)/𝜎): for any value (

̃𝜃, �̃�2),
compute the residuals 𝑈𝑡( ̃𝜃), evaluate the log-densities, add

them up to get ℒ( ̃𝜃, �̃�2), find the direction of its growth

w. r. t. 𝜃, choose a better guess of (𝜃, 𝜎2) until convergence.
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ML estimation of ARMA(p, q) models

𝑌𝑡 = 𝜇0 + 𝑈𝑡 +
𝑝

∑
𝑖=1
𝜑𝑖𝑌𝑡−𝑖 + 𝜑𝑝𝑌𝑡−𝑝 +

𝑞

∑
𝑗=1
𝜃𝑞𝑈𝑡−𝑞

𝑈𝑡(⋅) = 𝑌𝑡 − 𝜇0 −
𝑝

∑
𝑖=1
𝜑𝑖𝑌𝑡−𝑖 −

𝑞

∑
𝑗=1
𝜃𝑞𝑈𝑡−𝑞

Problem: unlike AR(𝑝), we cannot generate {𝑈𝑡}
𝑇
𝑡=𝑞+1.

Solution: make some assumptions about 𝑝 extra values

𝑌 ≔ 𝑌0, 𝑌−1,… and 𝑞 extra values 𝑈 ≔ 𝑈0, 𝑈−1,….

If (𝑌, 𝑈) are known, 𝑈1(𝜃0, 𝑌, 𝑈) can be conditionally

computed, and {𝑈𝑡}
𝑇
𝑡=1 reconstructed for plugging into 𝜙(⋅).

Recommendation: trust the built-in ARMA functions (they

make smart guesses about 𝑌 and 𝑈)!
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Thank you for your attention!
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