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Presentation structure

1. Principles of forecasting

2. Non-stationary time series

3. Time-series models in open-source software

Topics in time-series analysis. © Andreï V. Kostyrka, Université du Luxembourg, 2024 1 / 57



Principles of forecasting



Forecasting in ARMA models

Let Ω𝑡 denote all the information available up to 𝑡:
({𝑌𝑡}

𝑇
𝑡=1, our smart guesses 𝑌, 𝑈 and, thus, the conditional

values of 𝑈𝑡 denoted by �̂�𝑡 ≔ �̂�𝑡({𝑌𝑡}
𝑇
𝑡=1, 𝑌, 𝑈).

Forecast: conditional expectation 𝔼(𝑌𝑡+ℎ ∣ Ω𝑡).

• 𝔼(𝑌𝑡+ℎ ∣ Ω𝑡) is the BLP in linear specifications
• 𝔼(𝑈𝑡 ∣ 𝑌𝑡−1,… , 𝑌𝑡−𝑝) = 0 ⇒ assume 𝑈𝑡+ℎ = 0 for ℎ ≥ 1

• Plug {(𝑌𝑡, �̂�𝑡)}
𝑇
𝑡=1 into �̂�𝑡+1 ≔ �̂�0 +∑

𝑝
𝑖=1 �̂�𝑖𝑌𝑡+1−𝑖 +∑

𝑞
𝑗=1 �̂�𝑗�̂�𝑡+1−𝑗

• Save �̂�𝑡+1 ≔ 𝑌𝑡+1 − �̂�𝑡+1 for further use
• 2-step forecast in AR(1) models: 𝔼(𝑌𝑡 ∣ Ω𝑡−2) =
𝔼(𝜇0 + 𝜑1𝑌𝑡−1 + 𝑈𝑡 ∣ Ω𝑡−2) = 𝜇0 + 𝜑1𝔼(𝑌𝑡−1 ∣ Ω𝑡−2) =
𝜇0 + 𝜑1(𝜇0 + 𝜑1𝑌𝑡−2) = 𝜇0 + 𝜑1𝜇0 + 𝜑

2
1𝑌𝑡−2

• In AR models, 𝔼(𝑌𝑡+ℎ ∣ Ω𝑡) converges to 𝜇0/(1 − ∑
𝑝
𝑖=1𝜑𝑖)
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Forecasting in SARMA models

In seasonal models, 𝑌𝑡−𝑐 are in the equation⇒ any shock to

𝑌𝑡−𝑐 will be mechanistically repeated in the forecast.

• SARMA models can induce artificial seasonality by

reproducing the features of the previous year

Problem: year-on-year growth rates, 𝑌𝑡/𝑌𝑡−𝑐 − 1, exhibit
illusory ‘miraculous recoveries’ in economies. YoY figures

worsen further if seasonality patterns change.

Example. Consumers organise fewer family gatherings⇒
declining consumption of poultry on winter holidays⇒
decreasing gap between December and the rest of the year.

Solution: accept that SARMA models are ultra-short-term,

and filter seasonality out instead of adding distant lags.
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SARMA forecast problem illustration
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Perils of extrapolation

Credit: Jessie Robinson.
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Perils of extrapolation

Credit: Jessie Robinson.
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Apply extrapolation correctly

Credit: xkcd. Technical explanation.
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Specification and distribution tests

• Specification: Ramsey’s RESET (1969), Härdle–Mammen

(1993), Zheng (1996), Ellison–Ellison (2000),

Racine–Hart–Li (2006)…

• Distribution: Kolmogorov–Smirnov (1948), Shapiro–Wilk

(1965), Jarque–Bera (1987), Diebold–Günther–Tay (1998),

Berkowitz (2001), Kheifets (2014)…

• Normality tests are silly: all non-rejections in small
samples, all rejections in large samples, normality is
optional and yields nothing, and there are worse
problems in small samples than non-normality

• Never make decisions based on normality tests

• Visual tests are the best: look at Q-Q plots, density plots,

histograms, scatter plots…
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Adequacy test: Ljung–Box

In ARMA models, 𝑈𝑡 should be white noise:

𝑌𝑡 = 𝜇0 + 𝑈𝑡 +
𝑝

∑
𝑖=1
𝜑𝑖𝑌𝑡−𝑖 +

𝑞

∑
𝑗=1
𝜃𝑗𝑈𝑡−𝑗

ℋ0 : {𝑈𝑡}
𝑇
𝑡=1 ∼ WN ⇒ Cor(𝑈𝑡, 𝑈𝑡−ℎ) = 0 ∀ℎ ≥ 1

⇒ ∀𝑖 ∈ 1, ℎ : Cor(�̂�𝑡, �̂�𝑡−𝑖) = 0 ⇒ ∑ℎ𝑖=1 Cor
2(�̂�𝑡, �̂�𝑡−𝑖) = 0.

• Obtain the residuals �̂�𝑡 and their autocorrelation

estimates �̂� up to order ℎ
• Compute �̂� ≔ (𝑇 + 2) ∑ℎ𝑖=1

𝑇
𝑇−𝑖 �̂�

2
𝑖

• Reject ℋ0 if �̂� > 𝑄𝜒2ℎ(1 − 𝛼) (choose 𝛼 = 5% or any other)

𝑡-test for individual correlations: �̂�(ℎ)−𝛾(ℎ)
√1−�̂�(ℎ)

2
𝑛−ℎ−1

𝑑−−−−−→
𝑇→∞

𝒩(0, 1).

Topics in time-series analysis. © Andreï V. Kostyrka, Université du Luxembourg, 2024 9 / 57



Lag selection

Choosing 𝑝 and 𝑞 in ARMA models is up to the researcher.

• Too many lags⇒ poor identification + estimation noise
⇒ the fitted ARMA process might become ill-behaved or
close to non-stationary

• ARMA(2, 3) models often do not even converge

• Too few lags⇒ unaccounted-for inertia⇒ biased

estimates of 𝜑 and 𝜃
• Should one increase 𝑝 in the AR part or 𝑞 in the MA part

for a better fit? Which one creates persistence?

Methods: (1) pulling out of thin air, (2) theory-backed,

(3) based on visualisations of ACF/PACF, or (4) data-driven.
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Information criteria for ARMA models

Higher 𝑝, 𝑞 = more irrelevant old variables = same problem

as 𝑅2 in linear models: rubbish variables increase 𝑅2 whilst
contributing nothing but estimation noise and over-fitting.

General idea: encourage both goodness of fit and

parsimony (i. e. penalise the number of parameters).

Common penalties (the lower, the better):

• Akaike (1974): AIC(𝜃) ≔ 𝑇−1[−2ℒ𝑇(𝜃) + 2 dim𝜃]
• Schwarz (1978): BIC(𝜃) ≔ 𝑇−1[−2ℒ𝑇(𝜃) + dim𝜃 ⋅ log 𝑇]

In the Gaussian case, −2𝑇ℒ𝑇(𝜃) = ln �Var𝑈𝑡(𝜃) = ln �̂�
2
𝑈.

NB. BIC is asymptotically consistent; AIC suggests

over-parametrised models but may work better for small 𝑇.
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Model selection

Iterative approach: choose a class of models⇒ identify a

preliminary model⇒ estimate⇒ check adequacy⇒ revise

if necessary⇒ use in the application. The most

parsimonious adequate model wins.

IC approach: estimate multiple models on the same sample

(remove observations if necessary), calculate information

criteria (AIC, BIC), select the one that minimises either.

Cross-validation approach: estimate multiple models on

the train data⇒ predict values on the test data⇒ compare

forecast accuracy (e. g. Diebold–Mariano)⇒ choose the

simplest model indistinguishable from the ‘best’ one.
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Backtesting

Backtesting / TS cross-validation: assessing hypothetical

historical performance as if one had estimated the model

up to time 𝜏 < 𝑇 and used forecasts for 𝜏 + 1,… , 𝑇.

Example. How to choose a model out of these: AR(3), MA(2),

ARMA(1, 1), and SARMA(0, 1)(1, 1), given {𝑌𝑡}
200
𝑡=1 ?

1. Estimate all models on 𝑡 = 1,… , 150
2. Using these estimates, produce rolling forecasts {�̂�𝑡}

200
𝑡=151

3. Make a decision based on these forecasts (‘invest’ in

portfolios, re-balance inventory etc.), calculate the

outcomes using real {𝑌𝑡}
200
𝑡=151

4. Choose the model that led to the ‘best’ decision
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General forecasting aspects

• Forecast combination: average the predictions of the
best 𝑘 models from a set with or without weights (Bates
& Granger, 1969)

• Forecast combination puzzle (Stock & Watson, 2004): in

comparisons of point forecasts, a simple average forecast

from multiple models with equal weights often

out-performs more complicated weighting schemes where

the optimal forecast weights are estimated

• In TSCV, re-estimating every 𝑘 points is optional
• Updating the specification / parameters may result in

forecasts with greater variability (Spiliotis & Petropoulos,

2024)
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Non-stationary time series



Stationary processes are lame

• It is easy to handle stationary processes: the theory is

solid, and virtually all statistical techniques work well

(WLLN, CLT, CMT etc.)

• Forecasting is somewhat meaningless: exponential(-ish)
decay of the influence of the past

• Forecasts converge to the unconditional mean pretty

quickly⇒ uncommon to use horizons longer than 2

The struggle is about transforming real observed processes

(with trends, seasonal fluctuations, jumps, volatility

clustering etc.) into stationary ones, applying simple

analysis / forecasting methods, and then ‘un-transforming’

the processed data.
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Transforming inappropriate series

Real deal: finding a transformation that would

1. Be invertible

2. Convert the inputs into stationary processes

3. Not lose too much information in the process

4. Not suffer too much from Jensen’s inequality:
𝑓(𝔼𝑋) ≤ 𝔼𝑓(𝑋) for convex 𝑓, i. e. be not too non-linear

• If ln 𝑌𝑡 = ̃𝑋′𝑡𝜃 + 𝑈𝑡, the fitted values are �ln 𝑌𝑡, but
𝔼exp �ln 𝑌𝑡 ≠ 𝔼𝑌𝑡! (The medians and quantiles are invariant

to monotone transformations, though.)

If the model is estimated via Gaussian ML but the residuals

do not look normal, consider the Box–Cox transform:

𝑌BC𝑡 = (𝑌𝜆𝑡 − 1)/𝜆 or 𝑌BC𝑡 = ln 𝑌𝑡
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Deterministic processes

Processes with linear trends or harmonic components can

be modelled by including deterministic regressors.

Consider the CO2 concentration model for monthly data

(cycle length 𝑐 = 12): 𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛽2 sin(𝜋𝑡/6 + 𝛽3).

Estimates: �̂�1 = 0.11, �̂�2 = 2.8 (wave amplitude), �̂�3 = −0.66.

n

n

1960 1970 1980 1990

32
0

34
0

36
0 Original
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Time

−
xh

at
 +

 x

1960 1970 1980 1990

−
2

0
2

4 Residuals

Next step: tweak the trend specification (maybe spline?).
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Lag operator

Introducing the lag operator 𝐿 (in some books, 𝐵 for

backwards) that shifts the series by one period:

• 𝐿𝑌𝑡 ≔ 𝑌𝑡−1, 𝐿
2𝑌𝑡 = 𝑌𝑡−2, …

• Distributive law: (𝐿𝑚 + 𝐿𝑛)𝑌𝑡 = 𝑌𝑡−𝑚 + 𝑌𝑡−𝑛
• Associative law: 𝐿𝑚(𝐿𝑛𝑌𝑡) = 𝑌𝑡−𝑛−𝑚 = 𝐿

𝑛(𝐿𝑚𝑦𝑡)
• 𝐿−𝑚𝑌𝑡 = 𝑌𝑡+𝑚 (forward operator, 𝐹)

Powers of 𝐿 simplify notation in ARMA models:

𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 + 𝑈𝑡 ⟺ (1 − 𝜑1𝐿 − 𝜑2𝐿
2)𝑌𝑡 = 𝑈𝑡

NB. For brevity, we drop 𝜇 because 𝑌𝑡 can be de-meaned.
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Lag polynomial

Fundamental theorem of algebra: the polynomial

1 − 𝜑1𝑥 − 𝜑2𝑥
2 has 2 real or complex roots �̃�1, �̃�2, therefore,

(1 − 𝜑1𝐿 − 𝜑2𝐿
2)𝑌𝑡 = (1 − �̃�1𝐿)(1 − �̃�2)𝑌𝑡,

Another leap of faith (do not worry if this is confusing): one

can treat these lag polynomials as simple algebraic

polynomials, e. g. divide by them.

Example: an AR(2) process can be written as

(1 − �̃�1𝐿)(1 − �̃�2𝐿)𝑌𝑡 = 𝑈𝑡 ⟺ 𝑌𝑡 =
𝑈𝑡

(1 − �̃�1𝐿)(1 − �̃�2𝐿)
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Lag-operator form

Factoring the polynomial of the AR(2) model:

𝑌𝑡 = 0.8𝑌𝑡−1 − 0.12𝑌𝑡−2 + 𝑈𝑡

(1 − 0.8𝐿 + 0.12𝐿2)𝑌𝑡 = 𝑈𝑡

(1 − 0.6𝐿)(1 − 0.2𝐿)𝑌𝑡 = 𝑈𝑡
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Stationarity of an AR(1) process

𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝑈𝑡, 𝑈𝑡 ∼ 𝒩(0, 1)

Consider various degrees of autocorrelation:

0 50 100 150 200

-5
0

5
1

0 ϕ1

0.2
0.85
0.99

The higher 𝜑1, the less frequently the process crosses the

zero line (the higher the persistence).
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Example: a dog on a leash
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Example: a dog on a leash
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Stationarity of ARMA models

ARMA(𝑝, 𝑞) models in lag-operator form:

(1 − 𝜑1𝐿 − … − 𝜑𝑝𝐿𝑝)���������������������������
Φ(𝐿)

𝑌𝑡 = (1 − 𝜃1𝐿 − … − 𝜃𝑞𝐿𝑝)���������������������������
Θ(𝐿)

𝑈𝑡

Since 𝑈𝑡 ∼ WN, any finite sum of its lags is stationary (by the

properties of white noise). Therefore, an ARMA process is

stationarity if the AR part is stationary.

Example: 𝑌𝑡 = 1.1𝑌𝑡−1 + 𝑈𝑡 is non-stationary (explosive).

• For 𝑝 = 1, 𝑌𝑡 is stationary if |𝜑1| < 1
• For 𝑝 > 1, 𝑌𝑡 is stationary if the roots of the polynomial

1 − 𝜑1𝑥 − … − 𝜑𝑝𝑥
𝑝 lie outside the unit circle, i. e. in the

form (1 − �̃�1𝑥)(1 − �̃�2𝑥)⋯ (1 − �̃�𝑝𝑥), all |�̃�𝑖| < 1
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Unit roots

Consider the process

𝑌𝑡 = 𝑌𝑡−1 + 𝑈𝑡 ⟺ (1 − 𝜑1𝐿)𝑌𝑡 = 𝑈𝑡 where 𝜑1 = 1

It is called a random walk (drunkard’s walk).

If in the lag-operator form of the AR part of an ARMA

process, (1 − �̃�1𝐿)⋯ (1 − �̃�𝑝𝐿)𝑌𝑡 = … contains at least one

�̃�𝑖 = 1, then this process is said to contain a unit root.

Any process with a unit root is non-stationary.
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Problems with unit roots

• For AR(1), �̂�1 = �̂�1/�̂�0 is consistent and asymptotically

normal: √𝑇(�̂�1 − 𝜑1)
𝑑−−−−−→

𝑇→∞
𝒩(0, 1 − 𝜑21) for |𝜑1| < 1

• Inference breaks if 𝜑1 = 1
• When 𝑌𝑡 = 𝑌𝑡−1 + 𝑈𝑡 = ∑

𝑇
𝑡=1 𝑈𝑡 (if 𝑌0 = 0), 𝑈𝑡 ∼ WN(0, 𝜎2), the

variance of 𝑌𝑡 explodes: Var 𝑌𝑡 = 𝑡𝜎
2 𝑡→∞−−−−→∞

• Regression estimators have non-standard distributions

involving Wiener processes, Brownian bridges, and

non-√𝑇 rate of convergence

• Shocks persist infinitely, the influence of the past does

not decay, the process is sensitive to initial conditions

Goal: convert non-stationary processes to stationary ones

for the purposes of analysis.
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Implications of non-stationarity

Credit: https://www.tylervigen.com/spurious-correlations.
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Spurious regression

Seminal article: Granger & Newbold (1974).

If one’s variables are random or near-random walks, and

one includes variables which should not be included, it

will be the rule rather than the exception to find spurious

relationships.

Also: a high value for 𝑅2, combined with a high value of �̂�,
is no indication of a true relationship.

Nelson & Plosser (1982) analysed 14 series commonly used

in business-cycle analysis and concluded:

If we are observing stationary deviations from linear trends

in these series, then, the tendency to return to the trend

must be so weak as to avoid detection even in samples as

long as 60–100+ years.
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Witnessing spurious relationships

Simulation time!

• Trends create spurious relationships (bias)

• Seasonality creates spurious relationships (bias)

• Non-stationarity creates spurious relationships

(non-standard distribution, inflated significance)
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Dickey–Fuller test idea

Consider the potentially non-stationary process

𝑌𝑡 = 𝜌1𝑌𝑡−1 + 𝑈𝑡, 𝑈𝑡 ∼ WN(0, 𝜎2)

Subtract 𝑌𝑡−1 from both sides:

Δ𝑌𝑡 = (𝜌1 − 1)𝑌𝑡−1 + 𝑈𝑡 ≔ 𝛼1𝑌𝑡−1 + 𝑈𝑡

𝜌1 = 1 (unit root) ⟺ 𝛼1 = 0

Null hypothesis: 𝛼1 = 0 (deviation from the standard

paradigm ‘ℋ0 = there is no effect / no complication / the

world is beautiful’).
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DF test statistics

We can estimate this AR(1) process with an OLS regression of

Δ𝑌𝑡 onto 𝑌𝑡−1. Then, ‘ℋ0 : 𝛼1 = 0’ can be verified via a 𝑡-test.

• The asymptotics of ̂𝑡 ≔ �̂�1

√�Var �̂�1
are non-standard (tables

should be used)

• If the RW has a non-zero mean, i. e. Δ𝑌𝑡 = 𝜇 + 𝛼1𝑌𝑡−1 + 𝑈𝑡,
then, the observed ̂𝑡, often denoted by ̂𝑡𝜇, has a different

non-standard distribution

• If the RW has a trend, i. e. Δ𝑌𝑡 = 𝜇0 + 𝜏0𝑡 + 𝛼1𝑌𝑡−1 + 𝑈𝑡,
then, the observed ̂𝑡, often denoted by ̂𝑡𝜏, has another
non-standard distribution
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DF statistic distribution

DF statistic, no const.

−5 −4 −3 −2 −1 0 1 2 3

T=10
T=100
T=1000

Ticks:
1%, 5%, 10%

DF statistic, const.

−5 −4 −3 −2 −1 0 1 2 3

T=10
T=100
T=1000

Ticks:
1%, 5%, 10%

DF statistic, const. + trend

−5 −4 −3 −2 −1 0 1 2 3

T=10
T=100
T=1000

Ticks:
1%, 5%, 10%

How does one select between ̂𝑡, ̂𝑡𝜇, and ̂𝑡𝜏?

• Visually: no trend in the original series⇒ ̂𝑡, linear trend
⇒ ̂𝑡𝜇, quadratic trend⇒ ̂𝑡𝜏

• Formally: if the differences are stationary (𝛼1 = 0),
(�̂�, �̂�, �̂�) are asymptotically normal⇒ 𝐹-test for
(𝛼1, 𝜇0, 𝜏0) = 0 or (𝛼1, 𝜏0) = 0
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Augmented Dickey–Fuller (ADF) test (1984)

• The DGP in the standard DF test is too restrictive: very

few real phenomena can be accurately approximated by

an AR(1) process

• Generalisations: consider an AR(𝑝) model for

differenced series:

Δ𝑌𝑡 = [𝜇+] [𝜏𝑡+]𝛼1𝑌𝑡−1 + 𝜑1Δ𝑌𝑡−1 +… + 𝜑𝑝Δ𝑌𝑡−𝑝 + 𝑈𝑡

• Same critical values of �̂�1/(�SE �̂�1) as the DF statistic

• To choose 𝑝, start with a large 𝑝∗, test the significance of
𝜑𝑝∗, reduce 𝑝

∗ until a significant lag appears (Hall, 1994)

• Low size distortion but low power

• Alternative: determine the number of lags via AIC
• Higher power but larger distortions
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Phillips–Perron test (1988)

In DF and ADF tests, it is assumed that 𝑈𝑡 ∼ WN(0, 𝜎2), but
what if 𝑈𝑡 is heteroskedastic and autocorrelated?

• Assume only 𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝑈𝑡
• For inference, use a heteroskedasticity- and

autocorrelation-robust (HAC) estimator of �Var𝑈𝑡
• Same as Newey–West (1987) HAC estimator

• Same ℋ0 and asymptotic critical values as in the DF test

• Slightly worse performance than ADF test in finite

samples, but a modification (Perron & Ng, 1996) exists
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KPSS stationarity test (1992)

• ℋ0: 𝑌𝑡 = 𝜇0 + 𝜏0𝑡 + 𝑈𝑡, 𝑈𝑡 is stationary
• ℋ1: 𝑌𝑡 = 𝜇0 + 𝜏0𝑡 + 𝑈𝑡 + ∑

𝑡
𝑖=1 𝑉𝑖, 𝑉𝑡 is stationary, Var 𝑉𝑖 > 0

Test statistic for Var 𝑉 = 0 using the HAC-robust

(Newey–West-like) �Var𝑈:

�KPSS ≔
𝑇

∑
𝑡=1

(𝑇−1 ∑𝑡𝑖=1 �̂�𝑖)
2

𝑇−1 ∑𝑡𝑖=1 𝑈𝑡 + covariances
=

𝑇

∑
𝑡=1

(𝑇−1 ∑𝑇𝑡=1 �̂�𝑡)
2

�VarHAC 𝑈

For stationary processes, the denominator converges to

Var𝑈, the numerator is bounded⇒ do not reject ℋ0 for
�KPSS (another tabulated distribution).
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Frisch–Waugh–Lovell theorem

𝑌 = 𝛼 + 𝛽1𝑋1 +… + 𝛽𝑘𝑋𝑘 + 𝛾𝑍 + 𝑈, 𝔼(𝑈 ∣ 𝑋1,… , 𝑋𝑘, 𝑍) = 0

Consider two estimation approaches:

• One linear regression: project 𝑌 onto 𝑋1,… , 𝑋𝑘, 𝑍, get
�̂�1,… , �̂�𝑘, �̂�

• Many linear regressions
1. Regress each 𝑌, 𝑋1,… , 𝑋𝑘 onto 𝑍 individually, get projection

residuals �̃� ≔ 𝐴 − BLP(𝐴 ∣ 𝑍)
2. Regress ̃𝑌 onto ̃𝑋1,… , ̃𝑋𝑘 (without 𝑍), get �̃�1,… , �̃�𝑘

Theorem (Yule, 1907). �̂�𝑖 ≡ �̃�𝑖 for all 𝑖.

Generalisation: works with any regressor partition – regress

each 𝑌, 𝑋1,… , 𝑋𝑘 onto (𝑍1,… , 𝑍𝑙)
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Partially linear model

Consider the partially linear model:

𝑌 = 𝑋′𝜃0 + 𝑓(𝑍) + 𝑈, 𝔼(𝑈 ∣ 𝑋, 𝑍) = 0

𝑓(⋅) is a completely unknown function, yet we can

consistently estimate 𝜃0 (Robinson, 1988, Ecta):

𝑌 − BP(𝑌 ∣ 𝑍) = [𝑋 − BP(𝑋 ∣ 𝑍)]′𝜃0 + 𝑈

1. Regress 𝑌 non-parametrically onto 𝑍, get the residuals ̃𝑌
• Best predictor = conditional expectation; estimate via local

methods, e. g. kernel or spline regression

2. Regress 𝑋 non-parametrically onto 𝑍, get the residuals ̃𝑋
3. Regress ̃𝑌 onto ̃𝑋 to get �̂�

• Regressing 𝑌 onto ̃𝑋 is asymptotically equivalent because ̃𝑋
is orthogonal to any 𝑓(𝑍); finite-sample results might vary
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FWL theorem and seasonality

Consider a linear relation where each variable has its own

seasonal component orthogonal to the non-seasonal one:

(𝑌 [𝑁𝑆]𝑡 + 𝑌 [𝑆]𝑡 )���������������
𝑌𝑡

= (𝑋 [𝑁𝑆]𝑡 + 𝑋[𝑆]𝑡 )′���������������
𝑋𝑡

𝜃0 + 𝑈𝑡, 𝔼(𝑈 ∣ 𝑋) = 0

Any non-zero correlation between 𝑆[𝑌]𝑡 and 𝑆[𝑋]𝑡 results in

non-zero �̂� even if the co-movement between 𝑌 and 𝑋 is
solely due to Cor(𝑆[𝑌]𝑡 , 𝑆[𝑋]𝑡 ) ≠ 0. Avoid spurious conclusions:

L’hiver partit, l’été arriva — merci au parti communste pour cela.

The winter’s gone, the summer’s ablaze – it is the Party that we

should praise. (Old joke.)

Causal analysis requires seasonal adjustment.
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Partial auto-correlation function

Partial correlation: correlation between the parts of 𝑋 and 𝑌
not explained by linear functions of 𝑍, i. e. between
projection residuals after partialling out the effects of other

variables.

Cor(𝑋, 𝑌 ∣ 𝑍) ≔ Cor[𝑋 − BLP(𝑋 ∣ 𝑍), 𝑌 − BLP(𝑌 ∣ 𝑍)]

In the TS context, it is the correlation between the parts of

𝑌𝑡 and 𝑌𝑡−ℎ that do not correlate with 𝑌𝑡−ℎ+1,… , 𝑌𝑡−1.
E. g. PCor(𝑌𝑡, 𝑌𝑡−1) = Cor(𝑌𝑡, 𝑌𝑡−1), but

PCor(𝑌𝑡, 𝑌𝑡−2) ≔ Cor(𝑌𝑡, 𝑌𝑡−2 ∣ 𝑌𝑡−1) =
= Cor[𝑌𝑡 − BLP(𝑌𝑡 ∣ 𝑌𝑡−1), 𝑌𝑡−2 − BLP(𝑌𝑡−2 ∣ 𝑌𝑡−1)]
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Seasonal unit roots

• We have discussed classical UR problems, but there can

be seasonal unit roots, too

• Classical UR: 𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝑈𝑡, 𝜑1 = 1
• Seasonal UR (quarterly frequency): 𝑌𝑡 = 𝜑4𝑌𝑡−4 + 𝑈𝑡,
𝜑4 = 1
• In the polynomial form, (1 − 𝜑4𝐿

4)𝑌𝑡 = 𝑈𝑡, but this
polynomial has 4 complex roots⇒ harder theory

• Define Δ[𝑠]𝑌𝑡 ≔ 𝑌𝑡 − 𝑌𝑡−𝑠
• Seasonal UR cause the same problems as classical URs

(impossible to proceed with any kind of analysis using

standard theory)
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ARIMA and SARIMA models

• ARMA models for stationary difference of non-stationary
processes are called ARIMA(𝑝, 𝑑, 𝑞), where 𝑑 is the

number of times 𝑌𝑡 needs to be differenced before Δ[]𝑑𝑌
it is stationary (usually 0 or 1)

• Estimate ARMA(𝑝, 𝑞) for the differenced Δ𝑑𝑌
• Similarly, taking seasonal differences or including
seasonal AR or MA parts, one may obtain a
SARIMA(𝑝, 𝑑, 𝑞)(𝑝𝑠, 𝑑𝑠, 𝑞𝑠) model

• Popular initial choice: ‘airline model’ =

SARIMA(0, 1, 1)(0, 1, 1)𝑠, adequate for 50% of Eurostat

series (Fischer and Plana, 2000)
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Seasonal-unit-root testing

• In practice, it is often simpler to estimate a seasonal

model like SAR(4); if �̂�𝑠 ≈ 1, then there may be problems

⇒ take seasonal differences before proceeding

• There are tests used to detect seasonal URs, but they

are more complex

• Dickey, Hasza & Fuller (1984) propose a DF-like statistic

from the regression Δ𝑠𝑌𝑡 = 𝛼1𝑌𝑡−𝑠 + 𝑈𝑡 for ℋ0 : 𝛼1 = 0 (DHF

test)

• HEGY (1990): OLS regression with multiple clever

regressors to detect any of the 4 or 12 seasonal roots
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Borderline stationarity

What to do if one is not sure about (seasonal) UR?

• Taking differences of already-stationary processes yields

the over-differencing problem (increased variance) of

estimators

• Not taking differences of non-stationary processes
breaks the statistical inference

• Taking a difference is the lesser of two evils

• Seasonal URs can create false positive results in
classical UR tests

• Jointly test for seasonal and non-seasonal URs (Li 1991)

• If one suspects both types of URs, check for the seasonal

UR first, then the non-seasonal one
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Estimation of (S)ARIMA models

Consider a SARIMA(𝑝, 𝑑, 𝑞)(𝑝𝑠, 𝑑𝑠, 𝑞𝑠) model.

Take 𝑑 differences and estimate ARMA for Δ𝑑𝑌𝑡.

• If 𝑞 = 0, estimate the model by OLS

• If 𝑞 > 0, estimate the model by ML (using popular

software implementations)
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Model selection for forecasting

Compare models in terms of forecasting power.

Choose an appropriate criterion: RMSE, MAE, MAPE, tick

loss…

• RMSE: √
1

𝑇test
∑
𝜏+𝑇test
𝑡=𝜏+1 (𝑌𝑡 − ̂𝑌𝑡)2

• MAE: 1
𝑇test

∑
𝜏+𝑇test
𝑡=𝜏+1 |𝑌𝑡 − ̂𝑌𝑡|

• MAPE: 1
𝑇test

∑
𝜏+𝑇test
𝑡=𝜏+1 |

𝑌𝑡− ̂𝑌𝑡
𝑌𝑡
|
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Automatic model selection

In practice, one is often forced to choose only one model.

As perilous as it sounds, algorithms for ‘automated’

ARIMA(𝑝, 𝑑, 𝑞) are often applied:

• TRAMO (Gomez & Maravall)

• Hyndman–Khandakar algorithm

Ideas:

• 𝑑 is determined according to UR tests (ADF, KPSS)

• 𝑝 and 𝑞 are determined using AIC

• Try initial models: (0, 𝑑, 0), (2, 𝑑, 2), (1, 𝑑, 0), (0, 𝑑, 1)

• Choose the ‘best’ model by AIC, vary 𝑝 and 𝑞 by ±1, and
repeat until convergence
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Breaks

• Assumption: homogeneous and stationary time series;

however, it is not true for all cases

• There are three main types of breaks: instant jump,

temporary jump, permanent jump (shift)

• Instant jump: a short-term change in time series (with

reversal approximately to the previous level), modelled

as a one-period dummy variable

• Shift: a permanent change in the level, modelled using a

dummy variable for the period length

We consider break testing in Session 3. Other types of

breaks (e. g. parameter change) exist.
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Time-series models in open-source

software



R as a programming language

1. Install base R

• https://cran.r-project.org

2. Install RStudio (integrated development environment)

• https://posit.co

3. To compile non-pre-compiled packages (just in case):

• Windows: http:

//cran.r-project.org/bin/windows/Rtools

• Mac: install Xcode and a Fortran compiler

• Linux: for Debian-based (Ubuntu, Mint etc.), install

r-base, r-base-dev, build-essential; otherwise,

just the C/C++/Fortran compilers (e. g. GCC)
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JDemetra+ as a SA tool

JDemetra+: cross-platform graphical software for seasonal

adjustment officially endorsed by Eurostat.

• Both point-and-click graphical interface and support for

model specifications written in code

• Reusable and extensible Java components
• Possible to check all the tweaking parameters and

algorithms in case of under-performance

• Free and Open Source Software (FOSS), EUPL licence

Developers: National Bank of Belgium, Deutsche

Bundesbank, INSEE.

Download JDemetra from GitHub:

https://github.com/jdemetra/jdplus-main
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Time series in R

• Many ways to represent time series as objects; different

types = different methods

• Can be index- or time-based (the user decides how to
treat them)

• Multi-firm stock return data with gaps = which type?

• Weeks of the year = which type? How many?

• Default: ts (index-based with frequency), extensions:

zoo, xts

• Some analyses can be carried out without any TS

attributes (e. g. sandwich::vcovHAC assumes ordered

residuals)
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Functions

The real power of R!

• Direct productivity gain if you have a piece of code that

you use at least twice

• Very easy to create flexible functions, zero costs

• Functions can be generalised, wrapped, and nested to

create super-convenient, user-friendly wrappers

• Declare once, use everywhere; if you like it, upload it to

a repository or package it
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Creating functions

• A set of instructions applied to objects given in input

• Mandatory and optional (with default values) arguments

• May have multi-object return via a list

• Do not rely on global objects; create functions that rely

only on inputs

• Many tutorials on good practices
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Numerical optimisation in R

Solving a model = estimating the unknown coefficients =

numerically optimising some function (distance,

discrepancy, deviation, divergence).

• Write a function that accepts the parameter as input,

generates the series according to the specification, and

computes the desired measure (goodness / badness of

fit).

• Pass this function to a numerical optimiser (optim,

constrOptim, DEoptim::DEoptim,

hydroPSO::hydroPSO)

I can share slides on numerical optimisation in R.
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Simulation of TS processes in R

Show time with arima.sim().
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Statistics in R

• var(), cov(), cor() for variance, covariance,

correlation

• acf() and pacf() for the auto-correlation and partial

auto-correlation
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Built-in methods

• arima() + tsdiag() for its output

• hist(), qqplot(), plot(density(x))

• monthplot(x) if x is a ts object with a set frequency
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Useful packages

Apart from the built-in arima():

• forecast for TS modelling

• urca for unit-root tests

• rugarch for conditional volatility modelling

• RJDemetra and seasonal for SA
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AR(1) estimation

• Via OLS

• Via ML

Surprisingly, the results might be different due to the

implementation specifics (MLE is done via Kalman filtering

with some assumptions about the state variable values).

Use OLS for AR models:

• Adding extra regressors is trivial

• sandwich::vcovHAC() allows one to try various robust

variance estimators
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Thank you for your attention!
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