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Forecasting time series




Recall forecasting in ARMA models

p q
Yi=Ho+Up+ Z @Y it ®PpYep* Z GqUt_q
i=1

j=1

Let Q, denote all the information available up to t:

({Y,}.,, guesses Y = {Y,, ..., Y b U={Ug ., U, }and the
conditional values of U, denoted by U, = 0,({Y,}{_,. Y, U).

Forecast: conditional expectation E(Y,,, | Q,).

E(Y,., | Q,) is the BLP in linear specifications.

« E(U, | Y, ...,Yt_p) =0 = assume U,,, =0forh 21

 Unlike cross-sectional V,- = X’B, in ARMA models,
0, :=0,(Y,,Q,_,) is computed from the formula above!
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ChatGPT: explain ARMA to a 7-year-old

& ChatGPT
Imagine you have a magical jar that fills up with a different number of biscuits every day.

Sometimes you find many biscuits, other times only a few, and you love trying to guess how many

will be there tomorrow.
To make your guess, you remember two things:

1. How many biscuits were in the jar today and on previous days? Looking back helps you see if
there's atrend, like more biscuits each day.

2. Surprises about how often your guesses were wrong. Maybe you've noticed that whenever
you were very wrong about your guess, the next day the number was quite different. If you
guessed too few biscuits yesterday and were wrong, maybe there will be a lot more biscuits

tomorrow.

An ARMA model is like a smart helper that uses these two types of memories—how many biscuits
there were and when your guesses were way off—to help you make better guesses about
tomorrow's biscuits. it's like being a little biscuit predictor, using past biscuits and past surprises
to guess the future!
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One-step forecasting in ARMA models

p q
Yia=0+ Z @V * Z erm—j

i=1 j=1
- Plug {(Y,, 0,)}_, into the formula above

* Attimet, assume U, , = 0

- Attime t + 1, compute U, , =Y,,, - Y,,, for further use in
the MA part once Y, , becomes known
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Static and rolling forecasts

+ Static forecasts receive no new information at times
t+1,t+2,..and converge to the long-run mean

I-"/(‘I - Zi (,0,)
* Y,., = f(Y,.;,.) uses Y, , instead of Y,, ,
* Rolling forecasts use future values Y, ,,Y,,,, .. as soon
as they are observed

Rolling forecasts are sometimes called ARIMA filtering:
decompose the observed Y,,, into contributions from its
lags, past errors etc. The unexplained part (forecast error)
becomes the model error.

- InR, arima() returns residuals {0,}_,
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Multi-step forecasting and filtering

Since SARIMA models are embarrassingly short-term, it only
makes sense to use extremely short horizons (1-2 points)
for forecasting (+c for models with a strong seasonal
component).

In practice, researchers often estimate a SARIMA model
once and then, use it to update Y,,,, Y,,5, ... as soon as new
points become.

+21

« If there is a calendar component, future values of the
calendar regressor are also required (easy with
JDemetra+ and its R interfaces - see Session 2)
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Seasonality and forecasting

Does seasonality help forecasting?

« The air temperature in late July 2025 can be reasonably
expected to be 30-35°

« However, climate scientists are interested in deviations
from the baseline (average of last 5-10 measurements)

Possible approach: predict T, with local polynomials (or
even linear functions), S, by extrapolating the MA filter of
the seasonal component, and I, with stationary ARMA
models.
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Multiple time series




Multivariate normal distribution (MVN)

Recall the univariate normal distribution with density
—(t-p)?

]
fN(t) = W eXp 20-2 ¢

Generalise it to the multi-variate Gaussian density:
fu®) = @my M2 (det 312 exp (~2 ¢ - 1T (¢ - )
Reproducing property: any linear combination of the

Gaussian vector is a Gaussian RV.

+ Some textbooks even define the MVN in this manner

« The marginals of a MVN are also normal
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MM estimation of MVN distribution

The MVN distribution is computationally extremely
convenient — it is the only distribution for which the best
(ML) estimator is the set of these sample moments:

- Estimate pwith T' 37 Y,
- Estimate S with T-' 51 (Y, - a)Y, - Y
diag = diag VarY,, and the off-diagonal elements are

sample covariances Cov (Yt('), Yt(])).
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Visualisation of the MV normal
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The contour lines of a MVN are elliptical - hence the name
‘spherical disturbances’ for multivariate Gaussian WN!
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Marginals of the MV normal

Since under joint normality, BLP(Y | X) = BP(Y | X), knowing
the value of one coordinate of a MVN vector reduced
uncertainty about other coordinates.
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Panel data

- Cross-sections: {Y}i.,
- Time series: {Y,}/_,
- Panels: {{Y,.t}tT=1}7=1

. . (1 (n)
- Stacked time series Y, ={Y; ', .., Y: '},

Typically, each unit has its own level (fixed effect) and its
own variances. Units often have cross-sectional

correlations: Cov(Y;,, th) # 0.

In TS analyses, it is not uncommon (but not mandatory) to
scale the series to have zero mean unit variance.
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Common-factor model idea (skipped)

- Consider a wide panel with many time series

(1) (n)
Yt = {Yt [T Yt };’-:‘]

« Suppose that they are driven by k « n dynamic common
factors F, == {fp), . fﬁk)}
Then, an exact dynamic factor model is written as follows:
Y, = NL)F, +U,, W(L)F, =V,

U, and V, are serially uncorrelated with Var U, = ¥, and
varV, = 1. A; (L)F, is the common-factor contribution to Y;,.

Identification: EF,U, = 0, E(U,V, ,) =0 Vk (lags and leads).
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State-space models

Constant-parameter linear state-space model with k state
variables and n observed factors:

W(L)F, = V, (state)
Y, = N(L)F, + U, (observation)
VarU, =%, VarV, =% ; in many applications, 3, = /,.

« ARIMA models and various smoothing filters
- Season-trend-irregular model (structural time series)

« Multivariate structural models, dynamic factor models
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Kalman filter

» The states / factors F, are unobserved and cannot be
simply recovered from the observed signals

« If the states are known, then, the signals can be
predicted by linear combinations of factors

- Estimation idea: pick such W, A, and initial state guesses
that Vt(Ft) be close to the observed Y,

Not only Y,,, can be forecast from the current state - the
missing entries in the middle can be filled in.
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Kalman filter workflow

Recall ARIMA models and generalise them:

1. An initial guess about the state variables (usually zero)
is made, F,

Att =1, the predicted states are computed, If't
The predicted signals are computed, Y,(F,)

The prediction error is computed, U,:= Y, - Y,(F,)

o F W

The prediction error is used to correct the state at the
present step with a Kalman gain (time-varying matrix),
Fi=F + KU,

6. Repeat from step 2 by predicting the state at t + 1 using
the corrected present state ft
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State updating in the Kalman filter

Estimating the mean of Y, with no factors and no error

auto-correlation: Y, = X, + U, X, = ¢, U, ~ N(0, 1).

1. Assume X, =0 = X, = 0is the predicted state

2.0,=Y,-0=Y,

3. Correct the state with a Kalman gain of 1, X, = Y,

4. Att =2, the predicted stateis X, =Y,, U, =Y, - ¥,, and
the Kalman gainis 1/t =1/2

5. X, =Y, +(Y,=Y,)[2=(Y,+Y,)/[2

Simplest Kalman filtering: adjust the estimate of the mean

by 1/t times the difference between the observed Y, and
predicted state (sample average of (t — 1) terms of Y,).
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Motivation for principal components

State-space models are often hard to interpret: whatever

unobserved guesses minimise the measurement error is the
‘state’

« The dimensionality of the state space is unknown, the
mechanisms are potentially non-linear = virtually
everything is unknown in SSMs

+ We want to create one informative index variable from
the observable ones

« Create a linear combination of variables that has the
highest variability (= information content)
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Sufficient dimensionality reduction

Imagine a high-dimensional problem: the dependent
variable Y, may or may not depend on other variables X,.
How to select the relevant variables and keep the problem
low-dimensional without losing too much information?

Suppose that dim X, = n > T is high. Consider a fixed matrix
By, With a small row dimension k such that
E(Y, | X,)~ E(Y | BX,) and k < T.

More generally, consider finding such B that Y, be
conditionally independent of X, once the effects of BX, have
been taken into account (recall the FWL theorem).
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PCA minimisation problem

Given any vector of n variables {th, . Yt(n)}, remix it into

n linear combinations {P§1), . pﬁ”’}:

* The coordinates of P, are orthogonal

- Vary, Y,f') =Vary,; Pgl) =2, Var PE')

- Var PV is the highest possible variance under the
aforementioned constraints

This ‘remixing’ through linear combinations is often called
‘rotation’ and denoted via the rotation matrix R, .

Example: regress the child height not onto father’s and
mother’s height, but their average height and height

difference.
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PCA technical representation

Estimate 3 = Cov Y, (or better, CorY,)

Calculate eigenvalues and eigenvectors of &
- Eigenvalues det(S - Al ) = 0
- Eigenvectors: (S —Al v =0

Sort the eigenvalues, take the eigenvector
corresponding to the largest eigenvalue

« Take a linear combination of Y, with weights given by
this eigenvector

Then, Var 2, Yt(') =3, Var P,(f’) = Zi/\i.
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PCA intuition

PCA is equivalent to fitting a multivariate normal
distribution to the data and then, projecting them onto the
principal axes of the ellipse.

« Dimensionality reduction for a 3D bottle: only the
vertical dimension (level of liquid) contains useful
information

- Dimensionality reduction for a 3D pizza: two out of three
dimensions (top view) contains information about the
remaining pizza

If the data do not look like multivariate ellipses, PCA may
produce strange results.
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Practical aspects of PCA

« Variance manipulations make sense only for finite
variances = only stationary variables should be
transformed

« No universal rule ‘how many components should one
take’

« Reducing 2000 stocks into 30 portfolios is a good idea
* As long as A; > 1, there is dimensionality reduction
« Psychological level: 70%? 90%?

- Best: some application-driven criterion (via
cross-validation)

- If the correlation structure changes, chunking /
localisation may yield an improvement

23/38



Example: petrol (SP95) prices
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Correlation-based PCAiInR

dp <- diff(fuel_prices)
p <- prcomp(dp, scale. = TRUE)
str(p) # A list

$ sdev cnum [1:4] 1.78 0.76 0.42 0.29
$ rotation: num [1:4, 1:4] -0.541 -0.415 ...
$ center : Named num [1:4] 0.0039 0.0041 0.0031 0.0024
..- attr(*, "names")= chr [1:4] "P_LU" "P_DE" "P_BE" "P_FR"
$ scale : Named num [1:4] 0.047 0.057 0.05 0.053
$ x : num [1:153, 1:4] 0.19 -2.287 -1.22 0.038 0.484 ...

The components are stored in the $x list element, and the
linear combination weights in $rotation.

In this example, since the series are quite similar,
P = 0.54AY" + 0.42AYPE + 0.53AY5E + 0.50AY R
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Scree plots
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Imputation




Missing data

- Real time series contain missing values

« Guessing the missing values is called imputation

« The missingness mechanism can be random or
non-random
« In cross-sectional model, missingness completely at
random (MCAR) does not create biases (merely reduces the
effective sample size)
+ Missingness at random (conditionally on exogenous
variables) leads to inefficiency but not bias
« Missingness at random (conditionally on all observable
regressors, MAR) may lead to biases if not addressed
« Missingness non at random requires extra fortifying
assumptions to enable identification
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Imputation basics

« Consider the stock prices of a medium-cap company.
Long periods with zero trades = no price observed =
no 5-minute returns for high-frequency traders

« Structural solution: extrapolate the previous observed
values of price = zero price changes, zero trade volume

« In many cases there are no natural ways to carry out
imputation, and one need models for accurate guessing

+ Guesswork mixes the true DGP with the imputation model

- Nowcasting: predicting past or present values

- Delays in collection of statistics, ‘ragged’ panel edges

« GDP: quarterly, labour data: monthly. Can we reconstruct
the monthly GDP by observing the co-evolution of the two
mixed-frequency series?

In the TS context, missingness may create extra biases.
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Imputation using ARMA

- If there are gaps inside a time series, one can estimate
the model on the data before the gaps and use
predictions for the imputed values

« Some researchers add lead values of Y, to the ARMA model
to improve imputation accuracy:
Ye=U+@Y, 1 +8§ Y+ U +0,U

- Another approach: insert some values (e g. median) and
estimate SARIMA with additive outliers

+ ARIMA filtered values can be used for imputation

* TRAMO-SEATS-like: remove S,, extract I,, impute it,
extrapolate T, and S,, combine all
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Imputation using Kalman filtering

» Write the trend + seasonal + SARIMA model in the
state-space representation

« Apply the Kalman filter to predict the next state
« Compute T, S,, I, from the state values

See Hyndman, Koehler, Ord, Snyder (2008) for details and
the imputeTS package.
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Imputation using PCA

For several time series, iterate:

« Substitute the missing values by something (e. g. the
mean or (Y,,, +Y,_,)/2

- Apply PCA to these multivariate time-series (compute
the rotation matrix)

« Using the chosen number of components k and
singular-value decomposition (SVD), reconstruct Y,

- Iterate until convergence

In R, use the missMDA package.
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Multiple imputations

So far, we have been making point forecasts / predictions
based on the model and asymptotic theory for inference.

* Recall: var Vt < VarY, because of the multivariate
Pythagorean theorem (Y, is a linear projection of Y, onto
the linear space of Q, )

« Estimation uncertainty: the estimates are not the truth

 Under-estimating the second-order uncertainty:
T~ ¥ (Y, —m)? is minimised at the sample average

Recall forecast combination: combining many guesses
based on different models improves accuracy. Can we add
some randomness to guesses to gauge the impact of these

uncertainties on the forecast?
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Resampling methods

General idea: sample from the conditional distributions
FYW 1 yED0.), ., (YO | YED; 6 ), where 6, ..., 0, are
the parameters of the conditional distributions, not
necessarily linked to the true joint distribution f,.

- Choose the components (possibly all) to impute Y®,
assume some convenient conditional distribution that
depends on 6,

- Approximate the distribution of 6, draw é,. from it,
predict the missing values
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Multiple imputation for multiple TS

Using sufficient dimensionality reduction, use one of the
following algorithms:

« MI with regularised regression

« MI with sequential penalised regression

« Ml with recursive partitioning and predictive mean
matching

« Ml with PCA

« Flavours: simple; bootstrapped with generalised CV;
bayesian MI + regularised PCA
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AMELIA 11 algorithm

Assuming (1) multivariate normality of the data and
(2) missingness at random (conditioning on observables):

- Use a black box (the EM algorithm + bootstrap) to
estimate parameters of the multivariate joint
distribution

« Iteratively, draw the guesses from the conditional
distributions at random

- With different initial seeds, obtain m data sets

 Run the analysis many times, analyse the stability of
estimates under various random guesses
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Imputation diagnostics

« Plot the imputed time series and their differences!

- Densities: compare the distributions of the observed
and imputed values

- Over-imputation: add several missing values and see
how well they are guessed

- Over-dispersion: for multiple-imputation algorithms, try
‘wilder’ initial values and analyse the convergence
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What you can do now
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Final advice

Plot the object of study before and after applying
statistical methods

Think about all possible dependencies between the
variables, and then, make simplifying assumptions

« From general to specific

Write modular code, convenience wrappers, macros
Never fall in love with your models and never assume
that a model is the ultimate reality decomposition

« Try many models and many approaches

« Explore new packages and new methods
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Thank you for your attention!
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