Empirical research (SING R:

Essentials, real examples, and troubleshooting

Day 3: Special object types inR

Andrei V. KOSTYRKA I l
25t of September 2023 m

UNIVERSITE DU
LUXEMBOURG

Quick recap

We learned:

« How to write comprehensible code

« How to run R within RStudio, install packages, and call
functions

« How to work with vectors and matrices

Today, we learn how to manipulate other fundamental data
types used in empirical analyses.

1/165

Presentation structure

1. Logical operations, conditions, loops

2. Loading and subsetting main data types

3. Special values, dates, structures

4, Text manipulation

5. Devilish details and pitfalls

2/165

Logical operations, conditions, loops

Logical class

In programming, one of the basic variable types is boolean:
TRUE or FALSE.

- On / off, 1/ 0, flowing electric current / no current...

In R, the shorthands are T for TRUE and F for FALSE. One
cannot name a variable TRUE or FALSE (protected
keywords):

T # Returns TRUE

T <- 327 # Works
TRUE <- 327 # Error

3/165

Logical operations

-« AND &, OR |, NOT !

« Arithmetic: <, <=, >, >=, ==, |=

1 I

- Special functions for checking if an object is of a certain
type: is.matrix(), is.character(), is.finite(),
is.na(), %in%...

« is.logical() exists, too

« exists() also exists: check if an object with this name is
available: x <- 3; exists("x"); exists("xx"

4 /165

Logical operation examples

TRUE & FALSE # FALSE
TRUE | FALSE # TRUE
ITRUE # FALSE
2 <3 # TRUE
1:4 < 3 # T, T, F, F
1:4 <= 3 #71T, T, T, F

is.matrix(1:3) # FALSE

is.vector(1:3) # TRUE

is.character(1:3) # FALSE: it is "numeric"
is.character(as.character(1:3)) # TRUE

1:10 %in% 3:6 # F F T T TTFFFF

5/165

Checking conditions with if and else

X <- -0.5

if (x > 0) print("You rolled a positive number")
Should print nothing

if (x > 0) {

print("You are lucky today.")
} else {

print("Woe upon ye.")

}.

NB: The condition length must be 1!

NB: if the action contain only 1instruction, the {...}
braces can be omitted.

6/165

Checking multiple conditions

Use else if to check alternatives:

X <- -0.6

if (x > 0) {
print("You are lucky, here is your regression:")
print(Im(mpg ~ hp + wt, data = mtcars))

} else if (x < -0.01) {
print("You are unlucky, here is your summary:")
print(summary(mtcars))

} else { # When -0.01 <= x <= 0
print("Your tiny negative number is ")
print(x)

7/ 165

Nested conditions

Conditions can have multiple levels: it may be necessary to
basic checks (‘is it numeric?’, ‘are there = n observations?’,
‘are there values < 0?') before context-dependent checks.

X <- 1:3
if (is.numeric(x)) {
if (length(x) > 1) {
print(sum(x))
} else {
print("Need at least 2 points.")
}

} else print("Non-numeric x, cannot do maths.")
Try with x <- 1orx <- "Lux" (sum("Lux") — error).

8/165

Condition-checking specifics

« Do not write if (x > 2 == TRUE): this is redundant at
best and may cause errors at worst. Just if (x > 2)

« if() takes arguments of length 1. For checking vector
conditions, use ifelse()

if (c(TRUE, TRUE)) print("Double TRUE!")
#> Error: the condition has length > 1

ifelse(1:20 %% 2 == 0, "Even", "0dd")
#> "0dd" "Even" "0dd" "Even" ...

ifelse(condl, vall, ifelse(cond2, val2, ...)) can
be nested, but it is considered bad practice.

9 /165

Condition check location

Think of the ‘if-else’ construct as of a function that returns
an object that is immediately used. Save space and do not
write redundant code:

a <- 2
if (a < 0) x <- 1:10 else x <- 11:20

can be changed without any loss of clarity to

a <- 2
X <- if (a < 0) 1:10 else 11:20

The check can be placed at any depth:

im(mpg ~ hp,
data = mtcars[if (a < 0) 1:10 else 11:20, 1)

10/ 165

Playing an all-or-nothing game

Check if all elements of a logical vector are TRUE or any (at
least one) is TRUE:

« all(x) =
« any(x) =
1:5

X <-
all(x
all(x
any (x
any (x

N N N AN

x[1] & x[2] & x[3] & ...
x[1] | x[2] | x[3] |

TRUE
FALSE
TRUE
FALSE

To check if all elements of x are FALSE, use if (!any(x)):

if (all(is.finite(x)) & 'any(x <= 0))
print("A1l elements of x are positive numbers.")

11/165

Switch statement

switch() is a handy shortcut to avoid multiple if-else’s.

if (i == 1) doStuff()
else if (i == 2) doFluff()
else if (i == 3) dandruff() else ...
can be replaced with
switch(i, doStuff(), doFluff(), dandruff(), ...)

switch() checks equality to a character string and returns
the matching alternative. If there is no match, returns NULL
without an error (more on NULL later).

X <- "cat"; y <- "fox"

x.snd <- switch(x, cat="meow", frog="croak")
X.snd # "meow"

y.snd <- switch(y, cat="meow", frog="croak")
y.snd # NULL

12/ 165

Loops

There are two types of loop in R: the for loop and the while
loop. The former is more popular:
for (i in 1:10) {
s <- in2
print(s)
}.

Loops can iterate over any vector:

for (n in c("Asger", "Brynhildr", "Canute"))
Ca-t(nGOd kveld,", n’ II!\nII)

NB: if the loop contains only 1instruction, the {...}
braces can be omitted.

13 /165

‘While’ loops

‘While’ loops are useful when the termination condition
depends on something happening inside the loop:

s <- 0

set.seed(1)

while (s < 100) {
s <- s + rnorm(1, mean = 10)
cat("The sum is", round(s, 2), "\n")

}.

#> The sum is 9.37
#> The sum is 19.56
#> <...>

#> The sum is 101.32

14/ 165

Loops with conditions

Loops can be combined with conditions:

for (i in 1:100) {

if (1 %% 10 == 0) print(i)
}
#> 10 20 30 ...

Conditions can define anything - including iteratiors.

quick <- FALSE # Try changing to TRUE
ii <- if (quick) 1:10 else 1:100
for (i in ii) print(i)

A golfier (and slightly uglier) solution:
for (i in if (quick) 1:10 else 1:100) print(i)

15/ 165

Any questions on the logic control?

Loading and subsetting main data types

File types

In principle, R can read any file, but meaningful parsing
requires format support.

« Built-in: plain text, native binary, or most popular
versions of proprietary ones

« Built-in foreign package for older versions of Minitab,
SAS, SPSS, Stata, Weka

- Libraries readstatal3 or haven for newer format
specifications

- Can read genome data, images as arrays of pixel values
etc. (outside the scope of this presentation)

« Can read and evaluate external R scripts: source()

16/ 165

How to store data for exchange?

Simplest: plain-text CSV (universal)

- Best practice: by default, exchange data with the rest of
the world in plain-text / CSV format because any software
can read them, even after decades

+ Most non-R-user-friendly: write XLSX (appending sheets
is possible)
« Formulae lost, only the values are preserved

« Most compact: native compressed format
« Complex structures: convert to XML, JSON, or YAML

- Or write a function that creates the desired layout
(e.g. BTEX formatted according to a specific style)

17/ 165

Data input

Multiple ways to load data into R:

Text data: load lines as strings via readLines()

Plain-text data separated with delimiters:
read.table(), read.csv()

Own binary format with efficient gzip or xz
compression: load(), readRDS() (RData)

Libraries for reading external formats (Excel, Stata DTA,
SPSS SAV)

Interfaces to connect to data bases (SQL)

18 /165

Naming data sets

« On one hand, descriptive names are good

+ But typing the same thing over and over hurts
+ My slide space is limited

19 /165

Loading plain-text data

Reading a CSV table: ,-separated w/ decimal .
d <- read.csv("mtcars.csv")

CSV table in French locale: ; with decimal ,
d2 <- read.csv2("mtcars2.csv")

A custom table with tab separators

d3 <- read.table("mttab.txt", sep = "\t")

save(d2, d3, file = "mydata.RData")
load("mydata.RData") # Loads d2 and d3
load("mydata.RData", verbose = TRUE)

Text input from a text file (ASCII or Unicode)
aotm <- readlLines("wsj-abreast-20070117.txt")

20/ 165

Loading Excel data

If there is rubbish in XLS(X) files (images, macros, external
links etc.), some libraries may fail to load XLSX files - try a
different package. If nothing helps, save XLSX as CSV.

install.packages("openxlsx") # Run only once
library(openxlsx)
r <- read.xlsx("remittance2017.xlsx") # 0.1 s

install.packages("readx1")

library(readxl)

r2 <- read_excel("remittance2017.x1lsx")

Takes 7 s! Non-standard return class (tibble)!

install.packages("xlsx")

library(x1lsx)

r3 <- xlsx::read.xlsx("remittance2017.x1lsx",
sheetIndex = 1) # Takes 8 s + depends on JDK

21/ 165

Loading foreign data formats

install.packages("readstatal3") # Run only once
Comment the line above after the initial run
library(readstatal3)

ab <- read.dtal3("abdata.dta")

Two packages to load SAS data
install.packages(c("sas7bdat", "haven"))
library(sas7bdat)

dl <- read.sas7bdat("suivia.sas7bdat")
Fails due to the input format quirks
library(haven)

d2 <- read_sas("suivia.sas7bdat")

d2 <- as.data.frame(d2)

NB. haven functions return tibbles - non-standard tables
not understood by other functions! Convert them to DFs.
22 /165

Data-loading speed

Some packages are faster: data.table::fread() is an
improvement over the base R read.csv().

s02-large.csv has 32000 rows and 11 columns:

install.packages("data.table")
library(data.table)
system.time(read.csv("s02-large.csv")) # 140 ms
system.time(fread("s02-large.csv")) # 22 ms

Recall the load time differences between
openxlsx::read.xlsx() and xlsx: :read.xLlsx().
Always compare the speed if multiple implementations are
available.

23 /165

Classes

Before we proceed to data transformation and research
problems, we need to learn the specifics of data classes.

Every object in R belongs to a class (object-oriented
programming).

Based on the class, certain functions (methods) behave
differently.

Example: summary () prints summary statistics (min, mean,
median, ...) for every variable if used on a data frame and a
single table (with standard errors, p-values, ...) is used on a
linear model.

24 [165

Numeric class

The most popular class: simply write a number!

Numbers can be written with exponential notation,
especially when they are large:

n <- 10000000 # 1077, but hard to read
n <- 1e7 # Much better
n <- 1077 # Worse: requires ” evaluation

25/ 165

Integer class

Numbers with no decimal part so save space / simplify
calculations. Created by postpending the letter ‘L’ or using
as.integer() (the decimal part is dropped, not rounded).

c(class(4), class(4lL)) # "numeric", "integer"
as.integer(c(3, 3.7)) # 3 3

Not all numbers can be represented as integers: we have
64 bits = gaps appear = large integers are approximated!

.Machine$integer.max # 2147483647
class(.Machine$integer.max) # "integer"
class(.Machine$integer.max + 1) # "numeric"
X <- 100077; y <- x + 1 # x = le21

y - X # 0, but by now, you are not surprised
26 / 165

Integers are beneficial for big data

« An integer takes up 4 bytes of memory, a real number:
8 bytes of memory - cut down memory use

« Floating-point operations can be slower than integer
ones - speed up calculations (especially matching)

Suppose that you are handling German census data.

object.size(ai <- as.integer(1:1e8)) # 0.4 GB
object.size(an <- as.numeric(1:1e8)) # 0.8 GB
Real machines have these limits!

bi <- rep(l:1e4, 1le4)

bn <- as.numeric(bi)

setdiff(bi, ai) # 7.6 seconds on average
setdiff(bn, an) # 12.5 seconds on average

27/ 165

Logical to integer using which()

Find the positions of TRUE in a logical vector using which ().

x <- ¢(-2, 5, -7, -9, 0, 1)
a<- x>0 # FTFFFT
p <- which(a) # c(2, 6)

Useful to find matches (equality so something):

X <- c("Anna", "Bohumila", "Cyntia",
"Dobrostlav", "Emil")
which(x == "Emil") # 5

Find matrix elements by row and column (array indices):

which(matrix(1:12, nrow = 4) == 7, arr.ind = TRUE)
row col
3 2

28 /165

Mathematical operations with logical

Since logical values TRUE and FALSE can be re-interpreted
as 1and 0 in mathematical context, apply functions to
count the number / proportion of TRUE elements:

X <-¢(T, F, T, T, F)

sum(x) # 3
mean(x) # 0.6

This is useful when something must be done based on
proportions. Example: dropping the variables with more
than 10% missing values involves checking the condition
colMeans(is.na(data)) >= 0.1
(because is.na(data) is a matrix of logical values, and its
column means are between 0 and 1).

29 /165

Character class

Character: a letter, digit, or symbol displayed as a single
unit. String: an array of characters treated as a group.

Characters are created via quotation marks (" or ') or
as.character(). R fully supports Unicode (UTF-8):

X <- C(IIDII’ IIAII’ "ﬂ", "DAD,")
nchar(x) #1 1 1 3

Save scripts in UTF-8 via File — Save with encoding.
« If Windows uses a locale with a funny code page, the text

will appear broken if the editor assumes a different one

« Windows 10 (2022 update) would not allow R 4.1 to
display accented or non-Latin letters (‘naiveté’, ‘AY’)

30/165

Matrices and arrays

Last time, we talked about matrices — arrays are their
generalisations.

Array: regular multi-dimensional ‘hypercube’ of data, or a
vector wrapped in multiple dimensions.

a <- matrix(1:12, nrow = 3, ncol = 4)
b <- array(1:24, dim = c(4, 3, 2))

b

#> , , 1 , . 2
#>

#> 1 5 9 13 17 21
#> 2 6 10 14 18 22
#> 3 7 11 15 19 23
#> 4 8 12 16 20 24

31/165

List: umbrella vector class

List: collection of objects of any type and size, assembled
together.

a <- list(1:3, matrix(1:12, nrow = 3),
tm(mpg ~ hp + cyl, data = mtcars),
"A string of ponies")

List elements can have names that can be set at creation:

c(176, 182, 175, 196),
c(159, 169, 172, 166))

list(boyheights
girlheights

We shall learn how to handle names very soon.

32/165

Subsetting

Subsetting: selecting or extracting parts of objects, or using
indices to re-assemble objects into new objects.

Three types of subsetting in R:

1. Subsetting by integer index

2. Subsetting by logical vector

3. Subsetting by character name

Indexing in R starts with 1, unlike languages with 0-indexing
(e.g.in C, stst element is obtained via x[0]).

The function that extracts elements by index is [- square
bracket, followed by the indices, followed by the closing].
33/165

Subsetting by index

[accepts integer indices; commas separate dimensions.

« One-dimensional vectors: x[1:3]

« 2D matrices / data frames: x[1:3, 5:6]
« Put nothing to select all sub-dimensions: x[1:3,]
selects rows 1-3 and all columns of x
- If x isavector,x[1:3,] will produce an error
- If a single row or column of a matrix is chosen, the
dimensions are dropped (the object is simplified)

« Multi-dimensional objects: if x is a 4D array,
x[1:3, , 2, c(4, 9)] selects rows 1-3, all columns,
3 slice and elements 4 and 9 from the 4" dimension

34 /165

Dimension dropping in arrays

If an index of length 1 is requested, the result is flattened.

Selecting only one matrix row/column (x[, 31 orx[8, 1)
yields a vector with NULL dimensions. If a matrix with one
row/column is required, add ‘, drop = FALSE"

X <- matrix(1:12, nrow = 4)

y <- x[, 31 # Vector

y[1:2, 1 # Error; only y[1:2] will work

w <- x[, 3, drop = FALSE] # Matrix with 1 col
wl1:2, 1 # Works

Arrays: 4D x[1:3, , 2, c(4, 9)]1 - 3D. The 3™
dimension is dropped: only one index (2) is requested. Use
x[1:3, , 2, c(4, 9), drop = F] to keep it 4D.

35/165

Subsetting by name

If an object dimension has names, elements can be
extracted with a character vector. Integer and name indices
can be used simultaneously:

x <- matrix(1:12, nrow = 3)

colnames(x) <- c("SP500", "DAX", "MSFT", "GE")
x[1:2, c("SP500", "DAX")] # Same as x[1:3, 1:2]

Best practice: use meaningful names and do not hardcode
indices! Names are immune to place changes.

m <- Im(mpg ~ hp + cyl)

coef(m)[3] # Unclear; the EViews way
coef(m)["cyl"] # The human way

Even if m <- lm(mpg ~ cyl + hp) [swapped order],
coef(m)["cyl"] will return the same thing

36 /165

Use case for drop = FALSE with names

The user may select 1 or more columns in a matrix.
(Maybe they are using a variable-selection procedure.)
good.vars <- c("mpg", "cyl")

rowSums(mtcars[, good.vars]) # lorks

good.vars2 <- "mpg"
rowSums (mtcars[, good.vars2])

#> Error: 'x' must be an array of at least two dimensions

This drop = FALSE argument ensures that the object
always has dimensions (even with 1 column) and matrix
functions are applicable:

rowSums(mtcars[, good.vars2, drop = FALSE])

37/165

Subsetting by logical vector

If a logical vector has the same length as a dimension of X,
subsetting with it keeps the elements where it is TRUE.

Keep only the columns that have sum > 20:

X <- matrix(1:12, nrow = 3)

s <- colSums(x) # Sum by column: 6 15 24 33
s > 20 # FALSE FALSE TRUE TRUE

x[, s > 20] # Keeps columns 3 and 4

If the logical vector has wrong length (e. g. 4 columns but
3 logical elements), it will be silently recycled - beware:
x[, c(T, F, T)]

ncol(x) = 4, hence, it returns columns 1, 3, 4
because TFT if recycled to length 4: TFTT

38 /165

Subsetting with functions

Use functions to compute appropriate indices.
Return the last element of x and the last column of y:

x[length(x)]
y[, ncol(y)]

Return the last 3 columns of the matrix m. Use the fact that
ncol(w) = 50 = ncol(w) - 2:0 = 50 - 2:0 = 48:50.

wl, ncol(w) - 2:0]
Return every 4" row of m starting from the 2"%:

alseq(2, nrow(a), by = 4), 1

39/165

Reversing the order

Use rev() to reverse a vector:

rev(1:10) # 10 9 8 7 6 5 4 3 2 1
It can be done with x[length(x):1], too.
rev() is not good with other data types:

« rev() unwraps a matrix into a long vector, losing
dimensions

» rev() reverses the order of data-frame columns
For matrices and DFs, x[NROW(x) :1, 1] is the solution.

Fun fact: amazingly, rev(x) is slightly slower (nanoseconds,
do not worry in real applications!) than x[length(x):1]
because it checks if the length is non-zero first.

40 [165

Getting the first / last part

The head() and tail() functions return the beginning /
end of vectors (elements) or data frames (rows).

Return the first 10 elements of the vector x and the last
5 rows of the data frame y:

head(x, 10)
tail(y, 5)

NB. The head() and tail() functions are slow compared
to direct subsetting. For various lengths of x (10, 100, 1000),
tail(x, 1) is 20x slower than x[1length(x)], and
tail(x, 5)is 7xslower than x[length(x) - 4:01].

41/ 165

Subsetting lists

A list is a vector. Two main functions are applicable:

- [returns certain elements and preserves the outer list
« [[returns only one element and ‘unpacks’ it from the
list
To select a sub-list of a list x, use x[3:5]. To ‘extract’ the
element of a list, use x[[3]].
« Unnamed elements are selected by index in brackets:
x[3:5], x[[1]]
- Named elements are selected by name / index or via the
$ operator: x[["dog"1], x$dog, x[c("dog", "cat")]

42 [165

Difference between [and [[

« [selects certain elements of a list; the result is a list
« x[1] is still a list with one element; x[1:2] is a list, too

 [[‘unpacks’ list elements; the result may have a
different class

X <- 1list(1:2, letters[6:8], LETTERS[1:5])

#> [[1]] [[2]] [[3]]
#> l 2 ”f” IIgH Hh n IIA n IIBH HCH HDH HEH

x[1] # A list with 1 element

#> 12
x[[1]] # A numeric vector
#> 1 2
c(length(x), length(x[1]), length(x[[1]1]1))
#> 31 2
43 [165

Difference between [and [[, visualised

44 [165

Accessing list elements via $

Use $ to get the elements of a list (no quotation marks).

y <- 1ist(1:3, c("Alex", "Bill"), mtcars)
names(y) <- c("Numbers", "Names", "My data")
y$Numbers

#> 12 3

y$Names

#> "Alex" "Bill"

y[["Names"1] # Same

y[[Names]] # Does not work; error

If a name contains spaces or other characters breaking the
names, use backticks:

y$ My data’
45 [165

Factor class

Factor: a word with multiple meanings, but in R, it
represents a categorical variable (unordered or ordered),
usually with not too many distinct values.

In reality, any finite set can be mapped bijectively into a set
of positive integers:

{@’ (x’ *1<1 O' IA’ (x} = {4131 112' 5’ 673}

Internally, a factor variable is an integer with a label
attached to it - nothing else. Factors are great for
interactions, multi-level models, and saving memory.

46 [165

Creating a factor

Call factor() with an existing character vector:

X <- c("Low", "Low", "Medium", "High", "Medium")
y <- factor(x)
#> Low Low Medium High Medium

#> Levels: High Low Medium

By default, the labels are assigned alphabetically (H, L, M),
which means that the y vector is internally confusing.
Override them with the levels argument:
as.integer(y) #2231 3

as.numeric(y) # Same

levels(y)

w <- factor(x, levels = c("Low", "Medium", "High"))
as.integer(w) # 11 2 3 2

47 [165

Converting factors

Factor-to-character conversion is lossless (but the resulting
variable uses more memory):

x <- c("Carol", "Bob", "Bob", "Carol", "Alice")
f <- factor(x)

f2 <- as.character(f) # Back to character

f2[f2 == "Bob"] <- "Bill"
f2 # "Carol” "Bill" "Bill" “Carol" "Alice"

This is why factors may be a nuisance at the data-
transformaton stage (but will be incredibly handy in
analysis).

48 [165

Repeating and dropping values

Multiple instances of the same value can be indexed, which
will repeat it in the output:

X <- C(IIAII’ IIBII’ IICII)
x[c(1, 3, 1, 2)] #ACAB

Negative indices can be used to drop elements:

m <- matrix(1:18, nrow = 3, ncol = 6)

m[-1, -1]1 # Same as m[2:3, 2:6]

m[, -ncol(m)] # Same as m[, 1:5]

m[, -c(2, 5)]1 # Same as m[, c(1, 3, 4, 6)]

Either only negative or only negative indices should be
used: something like x[c(1, -3)1 produces an error.

49 [165

Changing parts of a vector

Use subsetting with <- to assign values to a subset:

x <- c("A", "B", "C")

x[2] <- "Bull" # x becomes A Bull C

m <- matrix(1:12, nrow = 3, ncol = 4)

m[1,] <- 99 # Set the first line equal to 99
m[2:3, 3:4] <- matrix(-11:-14, ncol = 2)

#> 99 99 99 99 # Now m is this

#> 2 5 -11 -13

#> 3 6 -12 -14

For lists, use mylist[[i]] <- value.

The [function gets elements, the [<- function sets or
replaces elements; they are different, but their invocation

looks similar: x[3] vs. x[3] <- 1.
50 / 165

Adding new values to vectors / matrices

Vectors can be grown through concatenation. If the target

index is not contiguous, NAs are added in the middle:

X <-11:13

x1 <- c(x, 99) # 11 12 13 99

x1[100] <- -3 # Same as c(x, rep(NA, 95), -3)

Grow matrices with cbind () or rbind(), or embed small

matrices into larger ones.

m <- matrix(1:9, ncol = 3)

cbind(m, NA, NA, 6)

Result: 3 full cols, 2 NA cols, 1 cols of 6s
mbig <- matrix(NA, ncol = ncol(m), nrow = 20)

mbig[1:nrow(m),] <- m

mbig[nrow(mbig),] <- -1

mbig # 3 full rows, 16 NA rows, 1 row of -1s

51/165

How not to add new values

The ‘bad’ way - to assign non-existent indices — may work
for vectors and lists; the values at the skipped indices are
filled with NA (for lists, NULL):

X <- 1:3

x[6] <- 99 # x becomes 1 2 3 NA NA 99

y <- 1list(1:3, LETTERS, mtcars)

v[[6]1] <- "w-('U')-w Kilroy was here"

y[4:5] # NULL NULL

y[[61] # w-('U')-w Kilroy was here

However, it does not work for matrices:

m <- matrix(1:9, ncol = 3)
m[5, 5] <- 99
Error: subscript out of bounds

52 /165

Renaming objects

There is no dedicated ‘rename’ function in R for objects in
the environment; vector elements and array dimensions can
be renamed.

Renaming objects is achieved via copying with a different
name and deleting the old instance:

new.objname <- old.and.bad.object.name
rm(old.and.bad.object.name)

Removing old.and.bad.object.name is necessary to
free up memory (the only situation where memory usage
does not go up is when neither object is modified).

53/165

Data frame

Data frame: a list of vectors of the same length assembled
like a matrix (by column).

+ Looks like a matrix, can be subset like a matrix

« Can be subset like a list via $

- Can have data of various types (character, logical, factor,
numeric)

Some functions cannot take data frames and require
matrices instead. Be careful when converting data frames
to matrices.

Example: LASSO from glmnet requires a numeric matrix,
which takes one more line to prepare via model.matrix.
54 [165

Favourite test data frame: mtcars

R has many built-in data frames. This course makes many
illustrations with mtcars.

Check the DF summary statistics and classes:

summary (mtcars)

class(mtcars$mpg)

Produce scatter plots of all variable pairs:

plot(mtcars)

Test functions with vector or matrix inputs:

mean(mtcars$mpg) # The mean of miles per gallon
var(mtcars[, c("mpg", "wt")]) # Variance-covar.
cor(mtcars$mpg, mtcars$wt) # Correlation

55 /165

Data frame subsetting

« Column subsetting via indices, logical vector, or names
« Use drop = FALSE to keep the length-1 dimension

 Nevertheless, a row of a data frame is always a data
frame (list), with dimensions not dropped

« class(mtcars[, 1])isnumeric, but
class(mtcars[1, 1)isdata.frame because the
elements of a row may have different classes -
simplification not posible

56 / 165

Naming with and w/o dimensions

Vectors and matrices have different naming methods:

X <- 1:4

names(x) <- c("Adam", "Borys", "Cyryl", "Dymitr")
X # dim(x) is NULL

#> Adam Borys Cyryl Dymitr

#> 1 2 3 4

m <- matrix(1:8, nrow = 2, byrow = TRUE)
rownames(m) <- c("Andor", "Botond")
colnames(m) <- c("Jan", "Apr", "Jul", "Oct")
m # dim(m) is c(2, 4)

#> Jan Apr Jul Oct

#> Andor 1 2 3 4

#> Botond 5 6 7 8

57/ 165

Dimension names

- If X is a vector and not an array (dim(x) is NULL), its
names are stored in the names attribute (vector)

- If x is an array (dim(x) has length at least 2), its names
are stored in the dimnames attribute (list)

From the last example:

dimnames(m) # Is a list of length 2

#> [[1]]
#> "Andor" "Botond"

#> [[2]]
#> HJanH ”ApPH HJU'LH HOC-tH

58 / 165

Changing only some names

Just like value vectors, name vectors can be changes only in
certain positions using indexing. In this example, we
rename some variables of mtcars.

Rename one column from drat to something descriptive:

d <- mtcars
colnames(d) [colnames(d) == "drat"] <- "axle.ratio"

Rename columns 3 and 4:

colnames(d)[3:4] <- c("displcmt", "horsepwr")

59 [165

Array names

Arrays can be created with dimension names via
array(..., dimnames = ...) if dimnames are passed as
a list of character vectors of dimensions-matching lengths.
The dimnames attributes can be assigned at any time:

a <- array(1:24, dim = c(4, 3, 2))

dimnames(a) <- list(c("Jan", "Apr", "Jul", "Oct"),

c("Goog", "MS", "Meta"), c("Train", "Test"))
a

#> , , Train , , Test
#> Goog MS Meta Goog MS Meta
#> Jan 1 5 % Jan 13 17 21
#> Apr 2 6 10 Apr 14 18 22
#> Jul 3 7 11 Jul 15 19 23
#> Oct 4 8 12 Oct 16 20 24

60 / 165

Using $ or name index

In data frames, it is more efficient to extract vectors via $:

class(mtcars) # "data.frame"
mtcars[, "mpg"] - 2*mtcars[, "vs"]
mtcars$mpg - 2*mtcars$vs # Same but shorter

However, the $ accessor is not available for matrices -
only [with column names:

m <- as.matrix(mtcars)

class(m) # "matrix" "array"

mémpg - 2*m$vs

#> Error in m$mpg :

#> $ operator is invalid for atomic vectors
m[, "mpg"] - 2*m[, "vs"] # Works

61/ 165

Data frames vs. matrices

« A data frame is a list of vectors of identical length; these
vectors can be of various types, i. e. data frames are
collections or heterogeneous variables

- A matrix is an atomic vector (all values have the same
type) wrapped into a 2D array

In R, there are many functions that operate on lists and
return lists (especially in parallelisation); therefore, data
frames are better handled as lists. Despite the fact that
matrices contain data of the same type, they are rarely
faster than DFs.

Benchmark the speed and try both in large-scale

applications!
62 /165

Data frame as a list of vectors

X <- mtcars

class(x) # data.frame

x$Name <- rep(c("Alice", "Bob"), 16)

str(x)

#> 'data.frame': 32 obs. of 12 variables:
#> <...>

#> $ carb: num 4 411 214224...

#> $ Name: chr "Alice" "Bob" "Alice" "Bob" ...

Converting x into a matrix will coerce all columns into one
type - character:

as.matrix(x)

#> mpg cyl disp hp 7 ...
#> Mazda RX4 "21.0" "6" "160.0" "110" # ...
#> Mazda RX4 Wag "21.0" "6" "160.0" "110" # ...

63 /165

Data frame from a matrix

Unlike data.frame —» matrix, the reverse is lossless.

m <- matrix(1:8, nrow = 2, ncol = 4)
colnames(m) <- c("USA", "Japan", "EU", "Rest")
rownames(m) <- c("Train", "Test")

m$Japan # Does not work

d <- as.data.frame(m)

d$Japan # lWorks

c(is.list(m), is.list(d)) # FALSE, TRUE

Since a data frame is a list, its column names can be set
with colnames() or names():
names(d)[1] <- "U.S."

names (d)
#> ”U.S.” ”Japan” ”EU” ”Rest”

64 [165

Data frame vs matrix speed

Q: Should | use matrices or data frames?
A: 1t really depends on the application.

Myth: matrices are faster than data frames because the
data are of the same type. We test this statement in a later
section (if we have time)!

Test results: data frames are approx. 2x faster than
matrices for row subsetting, and hundreds (!) of times
faster for column subsetting = use data frames for data
manipulation!

NB: ‘toy’ data sets do not necessarily reflect the reality -
test on real data sets if possible.

65 / 165

Use dedicated functions

If there is a specialised built-in function, use it instead of a
hand-made one.

m <- matrix(runif(le6), nrow = 1e3)
microbenchmark: :microbenchmark(

colSums(m), apply(m, 2, sum))
#> colSums: 1.1--1.4 ms, apply: 8.6--16 ms

The Rfast package has highly optimised fast functions that
help process large data sets.

microbenchmark: :microbenchmark(
Rfast::colMedians(m), apply(m, 2, median))
#> Rfast: 10--11 ms, apply: 49--59 ms

66 / 165

Do not re-compute large logical vectors

Do not subset big DFs many times with the same condition:

for (i in 1:100) { # This is slow
di <- d[d$id == i & d$income > 100,]
} # Operations with di inside

If an operation is to be done by a certain group:

- Best: split a data set into a list using split(), process
each element of the list, and unsplit()
ds <- split(d, f = d$id) # Work with ds
d <- unsplit(ds, f = d$id)

« Next best: extract a subset, process it, insert it back
dsmall <- d[d$id == 1,] # Work with dd
dld$id == 1,] <- dsmall

67 / 165

Do not subset unnecessary matrices

Task: extract the first 100 elements of the variable x from
the data frame d.

Common mistake: d[1:100,]1$x. This is bad because it
subsets a huge sub-DF (first 100 rows of d) and then,
extracts a vector.

Best solution: d$x[1:100] because column extraction from
DFs is blazingly fast, and subsetting vectors is faster than
subsetting DF rows.

If some operation is done for multiple variables in a data
frame, select columns first, observations last.

68 / 165

Good practice: use memory sparingly

Do not create many copies of large
data frames with minuscule
changes: chains like

d2 <- dl[d1%age > 17,]

d3 <- d2[d2%age < 66,]
devour RAM.

Hard to keep track, easy to forget
which copy is the relevant one.

Make sure that overwriting does not corrupt the data upon
rerun: d <- d[d$age > 17,] is safe (idempotent),
d <- d[1:(nrow(d)-5), 1is not (always drops 5 rows).

69 / 165

Automatic type conversion

Recall Session 1: R is a dynamically typed language.
Storage capacity: character > numeric > integer > logical.
« Characters can store any symbols, numbers with
arbitrary precision etc. - literally anything
« Numerics are limited to 64 bits for real numbers
* Integers have no decimal part
« Logicals are the least informative

Generally, R does not like losing data, which is why it
‘bumps up’ mixed data types.

70/ 165

Type casting example

class(c(1, 10, 3)) # numeric
class(c("a", "b", "y")) # character
0(10, "b", llyll)

#> Hl@” Hb” Hy”

class(c(10, "b", "y"™)) # character

Numbers saved as character require conversion to numeric
to enable arithmetic operations:

C(ulGll’ ||4||) + 2
#> Error: non-numeric argument to binary operator

as.numeric(c("10", "4")) + 2
#> 12 6
as.numeric(c("10", "a")) + 2

#> 12 NA # Because as.numeric("a") is NA
71/ 165

Recasting char — num in practice

Spreadsheets may contain footnotes
or remarks. If a dirty source contains
mixed data, the values are read as
character. It requires explicit conver- -
sion into numeric. Check the variable 3l
classes after loading - recast if needed!

d <- openxlsx::read.xlsx("mixed.xlsx")

d$x # mam n"2m n3m ngn vSoypce: thin air”

d <- d[1:4,]

mean(d$X) # NA

sapply(d, class) # X is still char; Y is num
d$X <- as.numeric(d$X)

mean(d$X) # 2.5

72/ 165

Factors from numeric

Since a factor is an integer variable with character labels
and alphabetically sorted levels, straightforward conversion
from numeric to factor and back is lossy because only the
order is saved:

x <- ¢(1, 1, 4, 10, 4, 7, 7, 10, 1)

f <- factor(x)

as.numeric(f)
#> 112 42 3 3 41

To recover the original numeric values, read as character
first (to use the label information):

as.numeric(as.character(f))
#> 1 1 4 10 4 7 7 10 1

73 /165

Converting classes

If a codebook has ‘1" = ‘Male’, ‘2’ = ‘Female’, ‘9’ = ‘Other’, ‘999’
= non-response, assign labels to increasing values
(internally, the input is mapped to positive integers:
{1,2,9,999} » {1,2,3, 4}).

g <- c(1, 2, 2, 999, 9, 1)

f <- factor(g, labels = c("M", "F", "0", NA))

f #M F F <NA> 0 M

#> Levels: M F 0 <NA>
as.integer(f) # Recoded to 1 2 2 4 3 1

Character-to-numeric is lossless for valid numbers:

aS.numel"iC(C("l", ||_2||’ ||3.5||’ nleln’ "A“, ”R2D2"))
#> 1.0 -2.0 3.5 10.0 NA NA
#> Warning message: NAs introduced by coercion

74 [165

Sorting arrays

Sorting: sub-setting a vector with a permutation that
rearranges it into (a/de)scending order. order() yields
these indices, rank() yields the ranks, and sort(x) does
the same as x[order(x)].

set.seed(1); x <- runif(10)
rbind(x, rank(x), order(x), sort(x))

#> 0.27 0.37 0.57 0.91 0.20 0.90 0.94 0.66 0.63 0.06 -- x

#> 3 4 5 9 2 8 10 7 6 1 -- rank
#> 10 5 1 2 3 9 8 6 4 7 -- order
#> 0.06 0.20 0.27 0.37 0.57 0.63 0.66 0.90 0.91 0.94 -- sorted

Sorting a data frame d by the variable x is as simple as
dlorder(d$x), 1. To sort by multiple keys (e.g. panel data
with ID and time), use d[order(did, dtime), 1.

75/ 165

Any questions on the variable classes?

Special values, dates, structures

Special values: NULL, NA, NaN, Inf

There are special values to represent real phenomena:

« class(NULL) = "NULL" (for length-0 objects)

« class(NA) = "logical" (to represent the absence of
knowledge of a particular value)
« class(NaN) = class(Inf) = "numeric"

« not a (real) number - could be a complex number but the
user did not use complex values

« infinity represents anything larger than the largest number
representable with 64 bits

76 / 165

Empty vector: NULL

NULL is an object of zero length representing the absence of
an element.

Changing some elements of a vector to NULL effectively
removes those elements.

Useful in debugging: a function can return meaningful
output of length > 1 in case of success and NULL in case of
failure.

77 | 165

Creating variable-length vectors with NULL

When NULL is put into a vector, it is ignored:

c(l, 2, NULL, 4) #1 2 4

Depending on a condition, an element may exist or be
skipped:

act <- 4 # Try changing to 5
c("Tybalt", "Romeo",
if (act < 5) "Juliet" else NULL, "Mercutio")

If act == 5, there will be no "Juliet" element.

78] 165

Not-a-number and infinity

Some mathematical operations are undefined, and some
expressions are indeterminate. Recall limits in
undergraduate maths classes: 0/0, 1%, 0 - co...

sqrt(-1) # NaN + warning 1 / © # Inf
log(-4) # NaN + warning -1/ 0O # -Inf
sin(Inf) # NaN + warning Inf + 5 # Inf
Inf / Inf # Silent NaN Inf + Inf # Inf

Inf are useful to define large penalties in numerical
optimisation (some solvers require numeric values only).
-Inf exists, too, and represents certain limits (e.g. Log(0)).

NaN is usually a consequence of ‘forbidden’ maths (maybe
input checking / domain restrictions are needed)

79/ 165

Undefined / missing value: NA

To check if some elements of x are NA, use is.na() (it also
react positively to NaNs).

NB: x == NA does not work!

To drop NA’s from a vector, use logical conditions or
na.omit().

a <- c(1, log(-1), NA, 1/0, 9) # 1 NaN NA Inf 9
al'is.na(a)] # 1 Inf 9

na.omit(a)

#> 1 Inf 9

#> attr(,"na.action")

#> 2 3

80/ 165

Uncertainty propagation

NA has type "logical" and interacts with logical values:

« TRUE | NAis TRUE, but TRUE & NA is NA
« FALSE & NA is FALSE, but FALSE | NAis NA

NA addles computations: when one of the inputs is
undefined, the output is by default undefined.

« Some statistical functions (mean(), sd (), quantile(),
...) accept the na.rm = TRUE argument to ignore them:
if x <- ¢(1, 2, NA, 6),then, mean(x) is NA, but
mean(x, na.rm = TRUE) is 3

- Some functions (e.g. 1m()) drop rows with NA

« Some functions return NA, and some throw an error
(prompting the user to get rid of NAs somehow)

81/ 165

Non-standard values, visualised

Non-zero value 0

NULL NA or error

Credit: David Armendariz.

Empirical research in Econ+Fin+Mgmt using R. © Andrei V. Kostyrka, Université du Luxembourg, 2023 82 I 165

Special values are not ‘bad’

Standards (like IEEE 754) exist for a reason, and these
‘not numbers’ help in error handling
Special values prevents such absurd errors as Stata’s
‘(x > 100) = TRUE'if x == . (is missing)

« In Stata, ‘.’ is represented internally by a large number
Safety regulations are written in blood

« Failing is necessary in programming to let the user know
that something went wrong

« Failure to fail can be fatal (as in the case with Therac-25:
6 people died)

Do not ignore NAs, or replace them with zeros, or impute!

83/165

https://en.wikipedia.org/wiki/IEEE_754

Checking if a value is numeric

a <- c(1, NA, NaN, Inf)
class(a) # "numeric"
is.finite(a)

#> TRUE FALSE FALSE FALSE

if (any(!is.finite(a)))
stop("Dark times, non-finite values.")

Note that this method filters out ‘good’ numbers, whereas
na.omit() leaves infinite values:

na.omit(a) # 1 Inf

NB: is.numeric(a) will not work because it checks the
class of the entire object, not elements. Numeric vectors

can have non-finite values.
84 /165

Date

Date: a time stamp measured in the number of days
elapsed since the 1% of January, 1970 (UNIX epoch).
(MS Excel uses the 30" of December, 1899, as the origin.)

Special operations apply to dates: extracting weekday or
part of date (month or year), adding days, re-formatting etc.

ISO 8601 date format: YYYY-MM-DD (or ‘/'). No MM-DD-YY
(USA style)! Bonus: sorting by name that starts with
YYYY-MM-DD = sorting by date!
as.Date(c("2023-12-31", "1980-05-04"))

as.integer(as.Date("2023-10-01")) # 19631
as.Date(19631, origin = "1970-01-01") # 2023-10-01

85 /165

HISTORICAL RECORPS SHOW MILLIONS
OF BUSINESS TRANSACTIONS OCCURRED
ON DEC 30™ 1399,

|

THIS ECONOMIC ACTVITY SPARKED THE
DIGITAL AGE, CULMINATING IN A “DATA
FESTWAL' ON JAN IS 1970, WHEN MANY
EARLY DIGITAL FILES \JERE CREATED.

IT'S GONG To BE WEIRD WHEN HISTORIANS
FORGET WHY SOME DATES SHOW UP A LOT.

Technical explanation

https://www.explainxkcd.com/wiki/index.php/2676:_Historical_Dates

Reading dates from files

If a text/CSV file contains ISO dates, the column with
hyphens is read as character — use as.Date():

d <- read.csv("ibm-iso.csv") # "2000-01-04" ...
d$date <- as.Date(d$date)

If an XLSX file has broken dates (typical Excel), convert from
integer starting on 1899-12-30:

d <- openxlsx::read.xlsx("IBM.xLsx")

d$date is 36528, 36929, ... -- WHAT

d$date <- as.Date(d$date, origin = "1899-12-30")

Or use readxl -- but convert from tibble

d <- as.data.frame(readxl::read_excel("IBM.xLlsx"))

Use the format argument to read dates in any notation
(see ?as.Date): as.Date("12/31/99", "%m/%d/%y").
86 / 165

Date sequences

The familiar seq() function changes its behaviour if the
class of its from and/or to argument is Date.

The by argument can be "day", "week", "month",
"quarter", or "year". It can be preceded by a positive or
negative integer + space, or followed by "s".

seq(as.Date("1991-01-01"), by = "month",
length.out = 12%30) # Jan 1991 -- Dec 2020

seq(as.Date("1910/1/1"), as.Date("1999/1/1"),
"year") # Jan 1910 to Jan 1999 by year

seq(as.Date("1910/1/1"), as.Date("1999/1/1"),
"3 years") # 01-01-10, 01-01-13,

seq(as.Date("2000/1/1"), as.Date("2003/12/1"),
by = "quarter") # 16 quarters

87 /165

Advancing time

Since dates are measured in days, arithmetic operations on
them are well-defined:

X <- as.Date(c("2019/1/26", "2019/2/26"))
X + 1 # 2019-01-27 2019-02-27
Xx - 100 # 2018-10-18 2018-11-18

However, months have a different number of days:

X + 3 # 2019-01-29 2019-03-01

The Lubridate package has great functionality:

library(lubridate)
X %m+% months(1)
#> 2019-02-26 2019-03-26 -- cf. x + 31

88 /165

Manipulating dates

x <- seq(as.Date("2019-01-01"),
by = 5, length.out = 100)

- Get the week days: weekdays(x) (Tue, Sun, Fri...)

« Extract the month only: format(x, "%m")

- Get the day as a number (1-366): format(x, "%j")
« Get the week number (1-53): format(x, "%V")

See ?strptime for all formats.

89 /165

Other units: time, month, quarter

R supports POSIX time (calendar or local). The time is
defined as the (real) number of seconds since 1970-01-01.

as.P0SIXct("2023-09-12 02:32:03")

Time stamps are useful for benchmarking.

ticO® <- Sys.time()

Sys.sleep(1)

difftime(Sys.time(), tic®, units = "mins")
Time difference of 0.01668883 mins

The zoo package has custom classes for months and
quarters: zoo: :as.yearqtr() and zoo: :as.yearmon()

(internally, it converts dates to the first date of a

month/quarter). It can be useful in some applications.
90 / 165

Examining object structure

A quick object overview is often necessary to understand
what it represents. Structure display is especially useful
when one is connected to a remote server with CLI only.
X <- 1:4
m <- matrix(1:8 + 0.1, nrow = 2,

dimnames = list(c("A", "B"), month.abb[1:4]))

str(x)
#> int [1:4] 1 2 3 4

str(m)

#> num [1:2, 1:4] 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1
#> - attr(*, "dimnames")=List of 2

#> ..$: chr [1:2] "A" "B"

..$: chr [1:4] "Jan" "Feb" "Mar" "Apr"

91/ 165

Structure of lists

Since R functions can return only one value, many methods
return a lists of outputs / diagnostics.

Example: tm() (linear model) returns a list with OLS
estimates, residuals, predicted values etc.

1 <- lm(mpg ~ hp + wt, data = mtcars)
str(l)
List of 12

$ coefficients : Named num [1:3] 37.2273 -0.0318 -3.8778
.- attr(x, "names")= chr [1:3] "(Intercept)" "hp" "wt"

$ residuals : Named num [1:32] -2.572 -1.583 -2.476 0.135 0.373 ...
- attr(*, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" ...
$ rank :int 3

$ fitted.values: Named num [1:32] 23.6 22.6 25.3 21.3 18.3 ...
.- attr(x, "names")= chr [1:32] "Mazda RX4" "Mazda RX4 Wag" "Datsun 710" ...
$ call : language lm(formula = mpg ~ hp + wt, data = mtcars)
$ model :'data.frame': 32 obs. of 3 variables:
..$ mpg: num [1:32] 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
< >

- attr(*, "class")= chr "lm"

92 /165

Quick analysis of lm structure

str(l <- lm(mpg ~ hp + wt, data = mtcars))

« OLS residuals and fitted values preserve observation
names (Mazda, Datsun etc.)

» The coefficient vector has variable names

« There is a fully preserved copy of the data set used in

estimation under 1$model

- Other methods and packages use it; pLot (1) (more
precisely, stats:::plot.lm(1l) extracts data for
diagnostic plots), sandwich: : vcovHC (1) uses the
model matrix for robust variance estimation

« This data set copy may consume a lot of memory; consider
saving only 1$coefficients and minimum necessary
objects in large-scale simulations

93 /165

Special data types

In empirical analysis, time-series data and panels are quite
common.

Time series: basic regular time series with ts (), extending
the basic capabilities with packages: zoo, xts, Lubridate
etc. Any aggregation command can be applied
(disaggregation: the td package).

Panels: the plm package (excellent vignette) and some
others; panel data can be read as ordinary rec

94 [165

Time series

« Many ways to represent time series as objects; different
types = different methods
- Can be index- or time-based (the user decides how to
treat them)
« Multi-firm stock return data with gaps = which type?
« Weeks of the year = which type? How many?

- Default: ts (index-based with frequency), extensions:
zoo, xts (allows irregular series)

« Some analyses can be carried out without any TS
attributes (e.g. sandwich: : vcovHAC assumes ordered
residuals and returns a consistent variance estimator for
stationary data)

95 / 165

Panel data

The panel functionality is provided by custom packages.

« plm, panelr, pglm, gnm, mclogit, FENmlm, bife,
PanelCount packages

- Fixed effects, first differences, dynamic panels (GMM) with
valid inference, conditional logit, non-linear and
multi-level panels

- Separate GMM packages for general estimation (gmm or
the newer momentfit)

« Panel transformations and aggregation by groups are
supported by the data transformation packages

-+ Some may work quicker, some may be slower (especially
in the computation of marginal effects)

96 / 165

Model object types

R has an agreed-upon model format. It is usually a list of

« Model matrix
« Estimated coefficients
- Fitted values + residuals
« Other model-specific information
Depending on the model type, extra methods are applicable

to models (covariance matrix, plotting, classification,
forecasting etc.).

However, it all depends on the exact implementation in
custom packages.

97/ 165

Clearing environment

Use rm(list = 1s()) to remove all user objects.

This will not clear all loaded packages. To unload one
package (e.g. dplyr), use

detach("package:dplyr", unload = TRUE)

This is rarely used, but saves time if it will take too long to
restart the R session. However, the cleanest way is to start a
new session.

Assignment submission: start RStudio from scratch — your
script must run without an error. Same goes for code
sharing.

98 / 165

Text manipulation

Text manipulation

R is fully Unicode-compatible on Linux and Mac, on
Windows starting from 4.2.0

Create and modify text according to arbitrary rules

Full Perl-compatible regex support

+ Regular expressions: special syntax supported by many
programming languages that enables text pattern
matching and replacement

Enables en-masse file manipulation because file names
are strings that can be obtained via file.exists() and
modified

99 / 165

Pasting

Use paste0() to merge scalars or vectors no separator or

paste(..., sep = "whatever") (default: space).

X <- C(IIAII’ "B", IICII)

pasted(x, ".", 1:3) # A.1 B.2 C.3

paste(x, 1:2) # "A 1" "B 2" "C 1"

paste(x, 1:2, sep = "!") # "Al1" "BI2" "CI1"

Use the collapse argument to merge a character vector
with the chosen delimiter (when there is more than one
input, sep is still added, unless paste0() is called):

paste(x, collapse = "!") # "AIBIC"

paste(x, 1:3, collapse = "!") # "A 1!B 2IC 3"
paste(x, 1:3, sep = "", collapse="!") # "A1!B2!C3"
pasted(x, 1:3, collapse="1") # "A1!B2!1C3"

100/ 165

grepl: find logical matches

grepl(what, x) returns a logical vector (same length as
X): TRUE if the what string was found in the element of x.

The matching is case-sensitive. Use ignore.case = FALSE
or search for character ranges with square brackets.

Find the countries containing the letter b:

cn <- c("Belgium", "France", "Germany", "Italy",
"Greece", "Ukraine", "Kosovo", "Sweden",
"Norway", "Albania", "EU27", "EU14")
grepl("b", cn) #F ... FTFF

cnlgrepl("b", cn)] # Only alBania
cnlgrepl("b", cn, ignore.case = TRUE)]
cnlgrepl("[bB]", cn)] # Belgium Albania

101/ 165

Operations with grepl output

grepl() is useful where logical variables make sense:
mean(grepl("[bB]", cn)) counts the share of elements
of cn containing the letter b or B (1/6 in this example).

The output of grepl() can be negated with ! to invert a
logical vector (i.e. TRUE where the match was not found)

Example: suppress part of the output. Show only the
coefficients that do not have ‘factor’ in their names:

1 <- m(mpg ~ factor(cyl) + wt + gsec, data = mtcars)
b <- 1$coefficients

names(b) # (Intercept) factor(cyl)é
b[!grepl("factor", names(b))]

#> (Intercept) wt gsec

#> 25.9180659 -3.8887560 0.5034263

102/ 165

grep: find indices of matches

grep(...) returns the indices of pattern matches, i. e. acts
like which(grepl(...)).

txt <- c("arm", "foot", "lefroo", "bafoobar")
grep("foo", txt) # 2 4

If there are no matches, grepl returns a vector of all FALSE,
and grep, a vector of length 0 (NULL).

Depending on the application, grep or grep may be more
convenient.

103 / 165

Special search patterns

Inside a search pattern for grep (1), the » symbol denotes
the beginning of a string, and $, the end of string.

The square brackets + hyphen denote a character range:
[A-Z] = any symbol between A and Z in the Unicode table,
[AA-Z] = any symbol except for the range.

cnh <- c("Belgium", "France", "Germany", "Italy",
"Greece", "Ukraine", "Kosovo", "Sweden",
"Norway", "Albania", "EU27", "AG")
cnlgrep("~G", cn)] # Germany, Greece but not AG
cnlgrep("e$", cn)l
France, Greece, Ukraine but not Sweden
grepl("~EU", cn) # What begins with EU
grepl("[0-9]1", cn) # Any digit between 0 and 9
grepl("[3-5]1", cn) # Any digit between 3 and 5

104 [165

https://en.wikipedia.org/wiki/List_of_Unicode_characters

gsub: substitution in strings

gsub() performs global substitution in strings using
patterns. It takes 3 arguments: what to search for, with what
to replace, and where.

Remove all non-letter characters:
X <- "3.7 k, 3.6 k, 3.7 k, 15 m, 12/h, Encyclong"

gsub("[*A-Za-z]1", "", x) # "kkkmhEncyclong"
gsub(",", ".", "3,9") # Decimal comma -> dot
gsub (" [Nex=""%ée/&]+", "", x) # Delete characters

f <- "input.xlsx"
d <- openxlsx::read.xlsx(f)
write.csv(d, gsub("\\.xlsx", "\\.csv", f))

NB. The symbols . () []*?+ must be escaped with \\ for a

literal match.
105 / 165

Creating formulzae by pasting

Very useful for big data! Imagine that the data set d has the
following column names:

colnames(d) <- c("id", "return5", "volX", "dvol2",
"vol5", "voll0", "vol15", "spread")

A formula for regressing return5 on all regressors starting
with vol and followed by a digit (but not a letter) can be
created automatically.

regs <- x[grep("*vol[0-9]", x)]

rhs <- pasteO(regs, collapse = " + ")

f <- formula(paste@("return5 ~ ", hrs))
print(f) # return5 ~ vol5 + voll0 + voll5
m(f, data = d)

106 / 165

Subsetting DFs by column name match

Data frame columns can be selected based on patterns in
column or row names. Same for vectors and their names.

dlag <- d[, grep("~lag_", colnames(d))]
NB. Consider adding , drop = FALSE in case the match

has length one but the matrix structure must be preserved.

Select the columns from 1till the one that goes right before
the first column whose name starts with W:

dl, 1:(grep("*W", colnames(d))[1] - 1)]1)

NB. Consider writing an exception if there might be no
match and grep() returns NULL (to avoid the error).

107 / 165

Substitution in column names

Replace "V" with "Quarter":

a <- b <- as.data.frame(matrix(1:12, nrow = 3))
colnames(a) # V1 V2 V3 V4
colnames(a) <- gsub("V", "Quarter", colnames(a))

Convert quarters to months by elminating characters,
performing arithmetic operations on the numbers, and
converting back to character:

quarter <- as.numeric(gsub("V", "", colnames(b)))
month <- (quarter-1)*3 + 1

colnames(b) <- paste®("M", month)
#> M1 M4 M7 M10

108 / 165

Text substrings

Extract sequences of characters in fixed positions with
substr():

cities <- c("Paris", "London", "Kyiv",
"Athens", "Stratford-upon-Avon")

substr(cities, 1, 3) # Extract chars 1--3

#> "Par" "Lon" "Kyi" "Ath" "Str"

substr(cities, 6, 8) # Produces empty strings

#> mnn Hn n nn ”S” HJCOPH

109 / 165

Printing to console

R has two useful functions to output material to the screen.

- cat() concatenates the supplied arguments into one
character vector

« print() is a generic function that prints objects
depending on their class (i.e. is a method)

110/ 165

Printing with cat()

cat() offers more granular control over printing.

« Accepts an arbitrary number of input arguments, coerces
them to a character vector

« Requires a newline escape sequence ‘\n’ at the end of
the line; without it, prints to the same line.

Useful for printing custom single lines:
set.seed(1)
for (i in 1:10) cat("Iteration", i,
"-- have a random number:", runif(1), "\n")
The default separator is a space; use sep to change it:
for (i in 1:10) cat("Iter ", i,
", proper comma spacing ensured.\n", sep = "")
111/ 165

Printing with print()

print is a generic method that will display a meaningful
representation on an object depending on its type.

« Vectors: wraps them in the window, adds line numbers
« Unlike cat (), shows only 1000 first elements by default

- Matrices / data frames: shows row and column names
- Model objects: shows the coefficients and/or other
relevant diagnostic messages

Whenever one types an object name in an interactive
console, R calls print () automatically:

m <- lm(mpg ~ hp, data = mtcars)
m # Same as print(m)

112/ 165

print() vs. cat()

print() respects the object structure: cat () will print an

array (e.g. matrix) as an unwapped vector - print will keep
the array intact.

m <- matrix(1:12, nrow = 3)

cattm) #1233 ... 11 12

print(m) # Rectangular

for (1 in 1:nrow(m)) cat(m[i, 1, "\n") # Same

Unlike cat (), print() adds embellishments. This is where
‘[1]’ comes from: position index. Try in a narrow console:
|print(10000:10005) |

| |

[[1] 10060 10001 10002 10003 |

|[5] 10004 10005 |

113 /165

cat() for basic TgX tables

In research, many tables are highly customised. More often
than not, there is no package or function to produce output
ready for copy-pasting into a TeX document.

Use cat() with a custom column separator. To produce \\
at the end, escape both backslashes:

set.seed(1)
a <- matrix(runif(12), ncol = 3)
for (i in 1:nrow(a))
cat(round(ali, 1, 2), " \\\\\n", sep = " & ")
The " \\\\\n" is really " \\ \\ \n"

80% there (except for the extra & and inconsistent digits) -
we can improve this example later.
114 [165

Rounding numbers

round () applies mathematical rounding rules and returns a
numeric.

round(0.453, digits = 2) # 0.45
round(0.453, 4) # Still 0.45

Negative digits argument to round to powers or 10:

round (453, -2) # 500

NB: unlike mathematical rounding, round() rounds to the
nearest even digit (IEEE 754 standard)!

round(c(0.45, 0.55), 1) # 0.4 0.6, not 0.5 0.6!
x <- seq(-1.5, 4.5, 0.5) # -1.5 -1.0 .
round(x) # -2 00 2 2 4 4

115/ 165

Formatting numbers

In many programming languages, sprintf() is the ultimate
formatter: add leading or trailing zeros, convert to scientific
notation, round etc.

- f = decimal (float), up to n places
sprintf("%.4f", c(pi, 0.45))} # 3.1416 0.4500
sprintf("%1.0f", pi) # Rounding to integer: 3
* e = exponential
sprintf("%.2e", -0.00001234) # -1.23e-05
- dor i=integer, 0 = add leading zeros
sprintf("%06d", 3) # 000003
sprintf("%06.2f", pi) # 003.14

« Last line: ‘return 6 positions in total, starting with zeros,
use 2 decimal places after the dot’

116 / 165

Formatting to significant digits

Significant digits (sigdigs): reliable digits starting with the
15t leftmost non-zero digit up to the accuracy limit.

Sometimes, relative accuracy > equal length (=absolute
accuracy).

Use formatC() to print decimals up to n sigdigs.

X <- pi * 107(-5:4)

formatC(x, digits = 4)

#> 3.142e-05 0.0003142 0.003142 0.03142 0.3142

#> 3.142 31.42 314.2 3142 3.142e+04

In scientific notation, they would be
3.142e-5 ... 3.142e+4.

117/ 165

Avoiding accuracy loss with sigdigs

« Do not report too few digits for the sake of alignment
- Relative accuracy is usually more important than equal
number of digits; mind the order of magnitude

« Exponential notation guarantees identical accuracy:
1.23e-3vs.1.23e+3 (but slightly harder to read)

« If the numbers enter a ratio, add an extra digit because
of precision loss in division

« Atable with ‘coef (SE) = 0.02 (0.01)' could imply any

_ .y 0.02499 _ 0.01501 _
t-statistic from 000507 = 4,99 to 001299 = 1.00

Approximation: in most cases, with a sample size of n the
change of results due to an extra observation is of the order
1/n. Sample size 100 = expect a change in the 2"9 sigdig.

118 / 165

Significant-digit reporting rules

« In text and tables, provide 2-3 sigdigs, e. g. ‘a 53%
increase’ or ‘p = 0.0123’, not ‘a 53.1% increase’

« In appendices or simulation results, use 4 sigdigs: ‘in
10 000 Monte-Carlo experiments, X = 1.234, SD = 1.432’

- Do not write meaningless sigdigs (false precision)
. [§ = 3.6870228, SE = 0.4976992 is nonsense

Accuracy (how stable the results are) # precision (number of

digits written to represent a quantity).

Rule of thumb: drop the last observation, re-compute the
results. In which digit the numbers changed = accuracy limit
= precision should not exceed that accuracy.

119/ 165

Date manipulation as text

Certain date changes can be done if the date is represented
as numeric or text.

Problem: convert the end-of-month dates 2023-01-31,
2023-02-28, 2023-03-31... to the beginning of month.

Four solutions:

« Hard: calculate the number of days in a month
k <- c(31, 28, 31, ...),subtract k-1 from dates

 Obfuscated: add 1 day and subtract 1 month
« Prone to errors: what if the last date is the last trading
date, e.g. 2023-09-29?

« Unattractive: convert to zoo: :as.yearmon() and back
« Easy: replace the last 2 digits of YYYY-MM-DD with 01
120 / 165

Converting end of month to beginning

Convert date to character, take a substring from the 15t till
the 8" character, postpend "01":

X <- as.Date(c("2023-01-31", "2023-02-28",

"2023-03-31", "2023-04-30"))
ym <- substr(as.character(x), 1, 8)
paste@(ym, "01")

#> "2023-01-01" "2023-02-01"
#> "2023-03-01" "2023-04-01"

121/ 165

Regular expessions

Regex: special syntax for text pattern matching and

replacement, i. e. search by symbolic mask.

Regexes are supported by many programming languages.

Learning them has positive externalities. (Huge topic,

deserves its own COUI’SQ.’)

IF YOURE HAVIN' PERL | | T GoT 99
PROBLEMS T FEEL 3
BAD FoR YOU, SON—

Tt

S0 T UsED

NOW T HAVE

fi

Technical explanation

122/ 165

https://www.explainxkcd.com/wiki/index.php/1171:_Perl_Problems

Examples of regular expressions

« Find a lowercase Latin letter followed by 1-4 digits
(the first digit must be 1 or 2)
[a-z][12]\d{o,3}

« Check for duplicated words (2 in a row)
(\b\w+\b) (?=.%\b\1\b)

- Replace the USA MM/DD/YYYY with internatonal (1SO)
YYYY-MM-DD date format, where MM or DD can be either
with (/01) or without (/1) leading zeros
/([e112\d)\/([0-312\d)\/([12]\d{3})/$3-$1-$2/

+ Is it a valid Visa credit card number

ra[0H91412F (2: [0H914{3}) ?$

123 /165

Shall we learn regular expressions?

According to the survey so far, this topic ranks 8/20, which
is why we may touch upon it.

Even if the voting results change...The literature on regular
expressions is vast, and there are many useful resources.

- Read tutorials with examples online:
regular-expressions, RegexLearn, CodeCademy,
RegexOne, RexEgg

- Validate regexes and see what they are doing, step by
step: regex101.com, regexr.com, regextester.com

124 [165

https://www.regular-expressions.info/tutorial.html
https://regexlearn.com/
https://www.codecademy.com/learn/introduction-to-regular-expressions
https://regexone.com/
https://www.rexegg.com/
https://regex101.com/
https://regexr.com/
https://www.regextester.com/

Regex in IDEs / editors

How to choose a good text / code editor / IDE: do not use
an editor / IDE if it does not support regex. (Same goes for
programming languages!)

RStudio: yes, it supports them.

Suppose that you want to find parts of code where the dsl,
ds2, ... variables are located, but you want to avoid matches
such as periods, inds, folds (i. e. not at the beginning).

Solution: +| F | enable ‘Regex’, search for \bds (here,
\b stands for the word boundary).

125/ 165

Any questions on the special values and text operations?

Devilish details and pitfalls

Is rm(list = ls()) unnecessary?

@ ooy Some users hate setwd() and
that make @O Instead use

rm(list = 1s()).
Those users usually write
Ifthe firstline of your R criptis Hthe firstline of your R scripts k f th er pa Cka e
e nees | rm(list = 1s()) pac ages oro p g
R devs. Their views may be too
e radical for Eco / Fin / Mgmt.
Do as you feel comfortable, but:

« Do not write paths more than once

Do not restore .RData images

 Make sure your scripts works without extra clicking
« Did you manually load extra packages or data files?

126 / 165

Setting working directories for many users

If an R script is used by multiple people, it is possible to
semi-hard-code a flexible solution (sic!) for the group:

« If there are 2 users and A uses Windows, B uses Mac,
check .Platform$0S.type

+ Use the HOME environment variable or Sys.info() to
distinguish between multiple users / machines

The next example shows how to auto-detect paths for
2 users with 3 machines.

127/ 165

Directory auto-detection

John uses Linux, Matilde has 2 machines (Mac and Windows)
with identical user names.

user <- Sys.info()["user"]
0s <- Sys.info()["sysname"]

if (user == "John") setwd("~/Dropbox/research/1")
if (user == "Matilde") {
switch(os,

Darwin = setwd("/Users/Matilde/Google One/project"),
Windows = setwd("C:/Users/Matilde/OneDrive/article"))
} # Do nothing otherwise

Consider writing a function (Session 4) with tryCatch()
that would return NULL in case setwd() is unsuccessful.

128 / 165

Should one load packages?

If a package is loaded, all of its exported functions are
accessible from the workspace.

One may want to invoke a function directly using the double
colon, : : (assumes that data.table is installed):

data.table::fread("s02-large.csv")

« Being concise and precise

« In text: ‘...where the robust matrix is computed with
sandwich: :vcovHC(..., type="HC1")'instead of
the verbose ‘we use the sandwich package function
vcoVvHC () with the type="HC1" option ...

- Dealing with masked functions / avoiding masking

129 / 165

Packages may hide secrets

Some functions in packages are not exported (cannot be
simply called by typing their name) - they are accessible via
the triple colon, :::.

plm::lagt.pseries() # Fails
plm:::lagt.pseries() # Works

Usually, functions are hidden from the user for a good
reason (package developers rely on them, but they are not
essential for the user).

However, some packages have bugs = something is not
working as expected = one needs to go deeper.

130/ 165

Enforcing length-1 conditions via && ||

There are long AND and OR operators: if the condition
length is not 1, they thrown an error (useful for checks even
before invoking if, thus eliminating the need for checking
if (length(x) == 1)).

X <- -2:2

(x >= 0) && (x <= 0)

#> Error: 'length = 5' in coercion to 'logical(1)'

(x >= 0) & (x <= 0)
#> FALSE FALSE TRUE FALSE FALSE

This behaviour is new in R 4.3.0. In versions 4.2 and below,
&& || returned the first element (caution!).

131/ 165

Order of operations

AND is evaluated before OR. To change the order, use
brackets: T|T&F = T|(T&F) = T|F = T, but
(TIT)&F = T&F = F.

Logical operations have the lowest precedence (use
brackets to make them evaluate first): T&F*5 is evaluated to
T&(F*5) = T&0 = F (because in the logical context, 0 is
typecast to F).

Use brackets for legibility if the order is non-obvious:
11:10 %in% 2:3 = 1(1:10 %in% 2:3), but the latter
makes the condition vector stand out.

132/ 165

Do not over-rely on ==

Despite == being called the ‘equality test’ operator, it may
behave unexpectedly in many cases:

« 0.7-0.4-0.3 == 01is FALSE because itis -5.6e-17
- all.equal(0.7-0.4, 0.3, tolerance=1e-12)
« Equality check via == is vectorised: 1:3 == 3:11is
c(F, T, F).To compare two objects, use identical()
- Zero-length or NA checks are special:
« is.null() and is.na() must be used
« if (TRUE[FALSE]) print("Yes") throws an error
because TRUE[FALSE] = NULL has length zero - it might
be worth checking if (length(...) > 0)
« For checking classes, there are specialised functions
is.data.frame(), is.factor(), is.Date(), ...

133/ 165

Checking equality to TRUE

When x not logical or has length 0, if(x) fails:

ids <- setdiff(1:3, 1:4) # Length 0

if (dids[1] < 10) print("First id is small")

#> Error: missing value where TRUE/FALSE needed

if ("Truthy") print("Feeling truthy today")

#> Error: argument is not interpretable as logical

Check if something is really TRUE (logical, has length 1 and
not NULL or NA) via isTRUE() (same for isFALSE()).

Use case: all.equal() returns either TRUE or some string
(‘Mean difference’, ‘Lengths differ’ etc.):
all.equal(1:3, 4:1) # "Numeric: lengths (3, 4) differ"

if('all.equal(1:3, 4:1)) print("Check") # Error
if(!isTRUE(all.equal(1:3, 4:1))) print("Check") # Works

134/ 165

Limitations of isTRUE

+ isTRUE() does not catch errors: if the condition
checking returns an error, evaluation will stop

« X <- "ABC"; isTRUE(sum(x) > 0) fails because
sum(x) throws an error for character x, not NA / NaN
« Sometimes, isTRUE() is redundant because there is a
better condition-checking function that does the job

« To get non-null dimensions even from vectors, one can use
NCOL() instead of ncol() + NULL check:

if (isTRUE(ncol(x) > 1) & length(b) == 1)
b <- rep(b, ncol(x)) # Redundant

if (length(b) == 1) b <- rep(b, NCOL(x))

- If x is a vector, NCOL(x) = 1, rep() does nothing

135/ 165

Inconveniences of ‘while’ loops

1. Extra diagnostic code required to keep track of the
number of steps
s <-1<-0
set.seed(1)
while (s < 100) {
s <- s + rnorm(1, mean = 10)
1<-1+1
}
cat("Took", i, "iters to reach s =", s, "\n")
#> Took 10 iters to reach s = 101.322

2. What if the loop never terminates?
X <- 1
while (x > 0) x <- x + 1 # HANGS
- Always cap iterations; equivalent to a ‘for’ loop + break

136 / 165

Loop iterator variable creation

The loop iterator variable is created in the current
environment that remains after the termination:

rm(list = 1s())
exists("j") # FALSE
for (3 in 1:10) print(j)
exists("j") # Now TRUE

Recall Session 2 (‘Why naming matters’): if i already exists
in the current environment, it is overwritten.

i <- function(x) print(x”2) # Horrible func name
i(8) # Prints 64

for (i in 1:5) print("Doing stuff 5 times")
i(8) # Error: could not find function "i"

137/ 165

Breaking out of loops

Loops can be terminated prematurely based on a condition:
for (i in 1:10) {

ret <- i”"2

if (ret > 50) break
h

Execution resumes after the loop

cat("Stopped at i =", i, "for ret =", ret, "\n")
#> Stopped at 1 = 8 for ret = 64

The objects that existed within the loop at the moment of
breaking remain as they were at the moment of breaking in
the current environment.

138/ 165

Logical and numeric

TRUE and FALSE are converted to 1 and 0 respectively when
used in calculations:

3 + TRUE # 4

2 + FALSExS # 2

as.numeric(c(TRUE, FALSE)) # c(1, 0)

c(TRUE, FALSE) + 0 # Same but a dirty hack
as.logical(0:1) # c(FALSE, TRUE)

If a real number is forced as a logical, O is treated as FALSE,
and any non-zero number as TRUE:

as.logical(c(-100, -0.1, 0, 0.7-0.4-0.3, 1))
#> T T F T T because 0.7-0.4-0.3 = -5.6e-17

139 /165

Emerging empty names

If a vector is selectively named, NA names are assigned:

a <- 1:3
names(a)[2] <- "Second"
print(a)
#> <NA> Second <NA>
#> 1 2 3

However, matrix rows / columns cannot partially named:

a <- matrix(1:12, nrow = 3, ncol = 4)
colnames(a)[2] <- "Second"

#> Error: length of 'dimnames' [2]

#> not equal to array extent

The name vector length for matrices must be exact:

colnames(a) <- rep("", 4)
colnames(a)[2] <- "Second"

140 / 165

Duplicated matrix dimension names

R works fine with duplicated matrix dimension names,
despite it being bad practice leading to errors:

a <- matrix(1:12, nrow = 3, ncol = 4)
colnames(a) <- LETTERS[1:4]

b <- a+100

all.equal(colnames(a), colnames(b))

d <- cbhind(a, b)

colnames(d) # ABCDABCD

Why it is bad: selecting by column name will select only the
first column with a matching name!

d[, uAn]
#> 12 3 # Column 5 (101, 102, 103) omitted!

141/ 165

Data frame name de-duplication

Unlike cbind (), data.frame() adds .1, .2, ...if some
elements have duplicated names (to avoid confusion):
a <- matrix(1:12, nrow = 3, ncol = 4)
colnames(a) <- LETTERS[1:4]

b <- a+100

d <- data.frame(a, b)

colnames(d)
> ABCDA.1B.1C.1D.1

However, the nothing is stopping the user from enforcing
duplicated names, which is to be avoided:
colnames(d)[c(1, 5)] <- c("A™, "A™)

colnames(d) # A B CDAB.1C.10D.1
d$A # 1, 2, 3 -- same as before

142 [165

Name propagation

’

Not all elements may be named - in this case, the ‘umbrella
names are stretched with a numeric sufffix.
y <- ¢(N = 100, stats = c(0, 1, -99))

#> N statsl stats2 stats3
#> 100 0] 1 -99

If new names are added during concatenation, the original
names of the internal object are prefixed:

x <- c(Mean = 3, SD = 2)

z <- ¢(N = 100, stats = x)

#> N stats.Mean stats.SD
#> 100 3 2

143 [165

Row / column subsetting test framework

Create a reasonably sized data frame d by repeating
mtcars 1000 times vertically and 30 times horizontally and
a numeric matrix m (because d has only numeric data and
no non-numeric classes):

d <- do.call(rbind, # Creating 32k rows
replicate(1000, mtcars, simplify = FALSE))

d <- do.call(cbhind, # Creating 330 cols
replicate(30, d, simplify = FALSE))

colnames(d) <- pasted("X", 1:ncol(d))

m <- as.matrix(d)

Then, we test subsetting with these data.

144 [165

Row / column subsetting code

Run 3 tests: randomly subset 10 000 rows / 200 columns /
both. We create 2 functions, rRows () and rCols(), to
generate random row / column indices, and run the code
100 times using the microbenchmark package.

mb <- microbenchmark: :microbenchmark
rRows <- function(n = 1e4)

sample(1:nrow(d), size = n, replace = TRUE)
rCols <- function(n = 200)
sample(l:ncol(d), size = n, replace = TRUE)

mr <- mb(d[rRows(), 1, m[rRows(), 1,
d[, rCols()], m[, rCols()],
dlrRows(), rCols()], m[rRows(), rCols()1,
unit = "milliseconds")

145 [/ 165

Row / column subsetting times

Timing in milliseconds (less = better):

8 [e]
8
o
8°% . °
—_— 9 —=
S %—
o

DF rows M rows DF cols M cols DF both M both

« Data frame row or r+c subsetting seems 2x faster
+ But why ‘seems’, not ‘is’?

- Data frame column subsetting is 500x (!) times faster

146 [165

Data frame subsetting perks

Why is resampling columns faster than resampling rows?

« In data frames, columns are short individual vectors (as
list elements); manipulating them one by one is
blazingly fast

Why is resampling DF rows faster than matrix rows?

« To re-sample matrix rows, sub-vectors are selected and
concatenated from the huge full-matrix r x c vector

147 | 165

Row and column operation speed

Matrix operations by column are slighty faster than by row

« Matrix columns are made of sequential elements of the
large r x c vector); getting elements 1: 3 is marginally
(nanoseconds) faster than c(1, 1001, 2001)

Compare the speed of row vs. column summation for a
1000 x 1000 matrix (nanoseconds add up):

m <- matrix(runif(le6), nrow = 1e3)
microbenchmark: :microbenchmark(

colSums(m), rowSums(m))
#> colSums: 1.1--1.4 ms, rowSums: 2.2--3.2 ms

148 [165

Numeric matrices from mixed data

Create a fully numeric matrix by recoding characters, factor,
dates etc. as integers (is fully reversible if one saves the
levels, i. e. the ‘codebook’ approach).

- factor: save levels —» as.integer()
« character: —» factor - as.integer()
- date: - as.integer() (days since 1970-01-01)

dn <- d # Creating a copy

char.vals <- levels(factor(d$char))
fac.levs <- levels(d$clr)

dn$char <- as.integer(factor(dn$char))
dn$date <- as.integer(dn$date)

dn$clr <- as.integer(dn$clr)

m <- as.matrix(dn) # Fully numeric matrix

149 [/ 165

Restoring mixed data from numeric

From integer: subset saved levels with integer indices to get
character vectors (recode if needed).

dr <- as.data.frame(m) # Matrix copy
dr$char <- char.vals[dr$char]

dr$date <- as.Date(dr$date)

dr$clr <- factor(fac.levs[dr$clrl)
all.equal(d, dr) # TRUE

This arcane manner of handling data is ubiquitous.
- Censuses, surveys, admin. data rely on codebooks:
1=married, 2 = divorced, ..., 99 = non-response
« Many data sets for SPSS / SAS suffer from this
- Saving characters (not integers) = waster of space; some
developers are too lazy to implement compression
- Enforced backwards compatibility with 1990s workflows

150/ 165

Empty arrays and data frames

When nothing matches the logical condition in array
subsetting or the index is NULL, the complementary array
dimensions are saved. The same is valid for data frames.

X <- matrix(1:8, nrow = 2)

x[, colSums(x) < 0] # colSums(x) are positive...
#> [1,]

#> [2,]

dim(x[, colSums(x) < 0]) # 2 0

x[rowSums(x) < 0, 1]

#> [,1]1 [,2] [,3] [,4]

x[NULL, 1 # [,1] [,2] [,3] [,4]

mtcars[NULL,]

#> [1] mpg cyl disp hp drat wt gsec ...
#> <0 rows> (or 0-length row.names)

151/ 165

round # format

« round() accepts what to round as the 1% argument, and
t#digits as the 2"% - sprintf() does the opposite

« Rounding with sprintf() works differently:

round(0.45, 1) # 0.4
sprintf("%.1f", 0.45) # "0.5"
sprintf("%.1f", 0.44999999999999999) # "0.5"
sprintf("%.1f", 0.4499999999999999) # "0.4"

152/ 165

Problems with factor value substitution

x <- c("Carol", "Bob", "Bob", "Carol", "Alice")
f <- factor(x); print(f)

#> Carol Bob Bob Carol Alice

#> Levels: Alice Bob Carol

Simple value substiution does not work if the assigned
value does not exist in the factor:

f[f == "Bob"] <- "Bill"

#> Warning: invalid factor level, NA generated
Carol <NA> <NA> Carol Alice

The levels can be renamed via direct assignment:

levels(f)[2] <- "Bill"
.F
#> Carol Bill Bill Carol Alice
153 / 165

Matrices from mixed-class data frames

A data frame naturally holds vectors of any type.

set.seed(1) # For reproducibility
d <- mtcars
d$char <- sample(LETTERS, size=nrow(d), replace=TRUE)
d$date <- seq.Date(as.Date("2021-01-01"),

length.out = nrow(mtcars), by = "month")
d$clr <- factor(sample(c("Red", "Green", "Blue"),

size = nrow(d), replace = TRUE))

sapply(d[, c("mpg", "char", "date", "clr")], class)
#> mpg char date clr
#> "numeric" "character" "Date" "factor"

Some applications require only numeric matrices (nothing
else). What can one do? Use formulae to carry out
meaningful conversion to numeric!

154 / 165

Shorter object names with ‘with’

R supports multiple data frames with arbitrary data types.
Yet, there is a certain elegance to the restrictions in certain
software packages: one data set = shorter invocation.

with() creates interprets object names as list element
names. It saves time if the list/DF name is too long.

cor(mtcars$mpg, mtcars$wt)
with(mtcars, cor(mpg, wt)) # Identical

clean.data <- mtcars
clean.data$sum <- with(clean.data, mpg + cyl + am)
clean.data$mpg + clean.data$cyl + clean.data$am
Drawback: no auto-complete with in RStudio!

155 / 165

Formula type

Formula: an expression used to formalise a relationship
that can be used to transform the data.

Usually looks likey ~ x1 + x2 (without ""s).

- Allows one to generate transformed variables on the
spot without tedious preparations

* Respects the variable class

Formulae are not universal (e. g. cannot specify an
EViews-like dynamic relationship) or reversible (e. g.
Y » logY, modelling B_g\Y, and automatically getting
exp(@). But: certain packages can handle dynamic
terms (plm) or transformations (forecast).
156 / 165

Formula term

We shall discuss formulae for models in Session 7:

 Multiple regression: y ~ x1 + x2

« Product: x1:x2

- All interactions: x1%x2

« No incercept: -1

« Dummies: factor(x2)

« Transform: y ~ I(f(x1))

 Everythingelse:y ~ .
Formulae can be generated with string manipulation (no
need to write the entire expression manually).

Today, we only use formulae to convert factors - dummies.
157 / 165

Factors to binary matrices

« Factor variables can be losslessly converted into a set of
dummy indicators
« Since factor() is a mapping into a set of integers, if

there are k distinct factor levels, creating k dummies
(one for each level) is its lossless numeric equivalent

158 / 165

Factors to dummies sans the baseline

Let cLr denote the colour of a car: red (baseline), green, or
blue. An economist is estimating fuel efficiency (miles per
gallon) as a function of horsepower, weight, and car colour.

mpg = B, + B,hp + B,wt + y'clr + U

clris a factor, there is an intercept in the model (B, - 1) =
green cars would be compared to red cars (baseline) = the
red category is omitted. Estimable equation:

mpg = B, + B,hp + Bwt + y2"clr=green *V3lairablue * U

159 / 165

Factors to dummies with the baseline

Interpreting the differences
compared to the baseline is

sometimes inconvenient (why CLr Doy lgreen hiue
should red be the baseline?): Red 1 0 O
there may be no good baseline). Green 0 1 0
In this case, a full set of dummies B¢ 0 0 1
is required.

mpg = B,hp + Bywt +y, I]clr=green

* v2|]clr=green + y3|]clr=blue +U

160 / 165

Factors to sets of binary indicators

Recall the data set from slide 154. Use a formula without
the intercept to create a matrix:

f <- «~ factor(clr) - 1
mm <- model.matrix(f, data = d)
head(mm)

By default, the names start with ‘Factor(...)’, which can
be ugly (but can be useful). Change them if needed:

colnames(mm) <- levels(d$clr)
d <- cbind(d, mm)

NB: R chose factor level ordering ‘Blue, Green, Red’ because
it is alphabetical.

161/ 165

Creating interactions via model matrix

Variable changes such as interactions and functional
transformation can be created in a model matrix.

If an economist wants to estimate a linear model
mpg = B, + B;am +y'cyl + 6’(am x cyl) + logwt + U,
the computer would be crunching the matrix

(’I am | s @Ml am-lI o am-I logwt)

cyl=6 cyl=8

f <- mpg ~ am*xfactor(cyl) + I(log(wt))
model.matrix(f, data = d) # It is that simple

162 / 165

Special escape sequences

Escape sequence: a combination of symbols that is not
interpreted literally (but rather differently). Starts with \

cat("a\ta") # TAB

cat("a\na") # New line

cat("a\r\na") # New line on Windows
cat("a\bg") # Believe it or not, backspace!
cat("\a") # Alert: make your PC beep

The backslash \ needs escaping, too. Recall Session 2, ‘File
paths on Windows”: a path is a character — \ activates
special sequences — de-activate \ by preceding it with \:
cat("C:\\boot.log") —» OK;cat("C:\Users") — error.

163 / 165

Escaping of quotation marks characters

Quotation marks: " and ' are identical. To write a string
with literal ", wrap it in ' (or vice versa). If are present in
the same string, precede them with \ to escape
(de-activate) the QM and make it literal:
cat('Restaurant "Paris"', "Café 'Londres'")

Cat(nReS‘taUPant \"Par\is\n ||)
cat("Restaurant "Paris"") # Error

Backticks (grave accents) are special, too, because they
allow creating non-standard names (e. g. names with
spaces):
cat("A tick \" on my back\n")
?"\"" # Get help on the backtick
164 [165

Further reading

« Organising scripts into projects
(so that Posit developers do not set your PC on fire)

« Therac-25 and its deadly false zero error code

165 / 165

https://www.tidyverse.org/blog/2017/12/workflow-vs-script/
https://en.wikipedia.org/wiki/Therac-25
http://www.ccnr.org/fatal_dose.html

Thank you for your attention!

	Logical operations, conditions, loops
	Loading and subsetting main data types
	Special values, dates, structures
	Text manipulation
	Devilish details and pitfalls

