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Quick recap

We learned:

« How to create various 2D plots

« How to customise plots and compute arbitrary statistics
from the data

« How to render 3D plots and encode videos of animations

Today, we learn how to find solutions of various
optimisation problems in the most general form.

2/128



Basics of numerical optimisation




What is numerical optimisation

Optimisation: Finding a parameter value that minimises or
maximises the chosen objective function.

Objective function: A scalar function that is to be
minimised or maximised.

Default behaviour in software: minimisation.

- Some plots look better with maximisation problems:
easier to visualise hills than valleys

« Equivalence: max f(6) = —[min —f(6)]
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Optimisation problems in economics

« Minimising model penalty to find the best fit:
S(2(V)), where U is the model residual (observed minus
predicted), £ is the loss function, S is the aggregating
statistic
- Least squares: #(U) = U%, S =31
« Median absolute deviations: #(U) = |U|, S = Median
+ Least trimmed squares (at 90%) Exclude 10% largest U?, or

ooy y» Where U(,) are ordered penalties

S(8(U)) = X
« Maximising goodness of fit:
« Likelihood: Probit / logit, Heckman selection, parametric
conditional density (GARCH variants), empirical likelihood
 Bayesian models: Maximum posterior utility expectation
« Machine learning: Percentage of correctly classified cases
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Unconstrained optimisation

0 := arg min f(9)
feRd
« Finding the minimum of the objective function f
- 6 is a local minimiser of f if f(8) < f(6) Y6 € ©, where © is
a neighbourhood
- If @ = RY @ is a global minimiser
« Example: ordinary least squares (for any data set with
n = d observations and a linear model without linearly
dependent regressors, one shall get an OLS estimate)
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Local and global optima

©

o — ® Global
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Constrained optimisation

rgnn f(8) subjectto g(b) =

« Finding the minimum of the objective function f

» Equality constraint: Certain functional relationships
between the coordinates of 68 should hold

+ Subspace constraint: 6 € O is often replaced by h(6) 2

(inequality constraint)

ER-Ry)

- Example: Maximise the Sharpe ratio, ,ofa

Or
portfolio of 10 stocks with weights 0.05 < w; < 0.40,

Sw;=1,i=1,.,10

« Hard to tackle in general, but several solutions exist

« R packages: nloptr, Rsolnp
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Converting constrained problems

Re-define the objective function to bake in the constraints:
min f(8) s.t. g(6)=0 < min f*(6),
0o feRd

<o . | f(B), 8€0andg(d)=0,
f16) = o, otherwise.

« Checking if 6 € O is easy
« But 6 near the boundary = algorithms may behave poorly

« Incorporating g(0) = 0 is hard as it usually restricts the
solution space to a subspace of lower dimensionality
+ Solution: re-parametrise the problem (e.g. if Yrowp=1,
use 1- 3" w; instead of w,)
- Expressing 8% through g and 6" can be impossible - add
penalty for g() # 0, e.g. ming[f(6) + 100]|g(6)|3]
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Constrained optimisation visualisation

Constraint: [0(M]2 +[6]2 = 4

—— Constraint
® Constr. optim




Derivative of a function

Derivative: The immediate rate of change of a function.

)-8y HEN 1O

h-0 h

f’(0) is the slope of the tangent line to
the graph at 6.

lllustration: f(0) = 63, f’(0) = 362.
f(m=1,f(01)=3.

The tangent equation at 6 = 3 is 36 - 2.
A differentiable function must be
continuous (the opposite is not true:
f(8) = |0] is not differentiable at 0).




Gradient of a function

Gradient: vector of partial derivatives of a differentiable
scalar function. of
5o (6)
V() =|
f of
s0@(©)
At any point 6 (a vector), the gradient - the d-dimensional
slope of f - is the direction and rate of the steepest growth
of f.

‘A source of anxiety for non-mathematics students.’
J. C. Nash, ‘Nonlinear Parameter Optimization’ (2014).
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Jacobian of a function

Jacobian: Matrix of gradients for a vector-valued function f.
Ifdim6 =d, dim f =m,
y y Vi)(6)
I16) = (55m(®)  5w®)=|
Vim(6)
The Jacobian is often required for constrained optimisation
problems, i.e. /g(e) if g(6) = 0.

Including incorrectly computed derivatives (mostly
gradients or Jacobian matrices) <...> explains almost
all the ‘failures’ of optimisation codes | see. (Ildem.)
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Hessian of a function

Hessian: Square matrix of second-order partial derivatives
of a twice-differentiable scalar function.

o f 32f
2f d ae<1)ae(1>(6) aemaew)(e)
VA(8) = | = = : :
! 361a60) | ) )
=t \ 2L _(g) ... 2L _(p)
36(d)3p(1) 20(d)ap(d)

The Hessian is the transpose Jacobian of the gradient:
vX(6) = . (0)
If v is differentiable, V]? is symmetric.

Hessians are sometimes useful in numerical optimisation,
but are too slow or unreliable (approximations are used).

13/128



Numerical derivatives

When analytical derivatives are not available, the derivative
definition gives a hint:

I CSI05S 6)

h—0 h

f'(x):
Remove the limit:

f(x+h)-f(x)
h

fip(x, h) =

One can choose a sequence of decreasing step sizes h; (e.g.
{0.1,0.01,0.001, ...}), and observe the sequence
fip(x,0.7), f;(x,0.01), f{,(x,0.001), ... converge to f’.
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Higher-order accuracy of derivatives

Central derivatives are more accurate than one-sided ones:

0.5f(x + h) = 0.5f(x — h)
h

fCD

The Taylor expansion yields:

* F100 - fp = =Eh + 0(h?) = 0(h)
. (%) - fCD(x)_—Mh = 0(h?), where a € [-1,1]

However, if f(x) is already known, it requires 2 more
computations than f/,, which is 2 times slower.

Better accuracy is achievable with more terms and careful
choice of h.
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Higher-order derivatives

Higher-order derivatives may be obtained by repeatedly
differencing first derivatives. However, doing the
differencing in one step is more accurate:

f”(X) - f(X— h) - 2£(2X) + f(X + h) + O(h3)

Derivatives of order m may be computed as a weighted sum
of f. For a stencil {b,};.,, define the evaluation grid

X+b h,x+b,h,..,x+b_h.1f m<n,then, Iw.}, that yield
the a'M-order-accurate approximation of f(™:

d’f 1 < a
()= ;wif(x+bih)+0(h )
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Numerical Hessians

Compute Hessian via finite differences of finite differences
w. r.t. two indices. Define h; to be a vector of zeros with 1in
the it" position.
4 evaluations of f are required to approximate H; via CD:
fij = 2h )
f(X+h,'+hj) - f(X—hi+hj) - f(X+h,'_hj) + f(X_h,'_hj)
) 4h?

Use the symmetry: if x = 6, compute H;; for all
i=1,..,dim6andj >i.
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Numerical accuracy matters

The choice of size h is crucial for accuracy.
« h too large — truncation error from the truncated
Taylor-series term

« h too small - rounding error: catastrophic cancellation,
division of something small by something small - finite
machine accuracy (machine &)

Exact expressions for optimal h* exist. A package for
auto-selection of h and parallel computation of gradients is
being developed. General rules:

« h* ~ €112 for forward, h* ~ €'/3 for central differences

« h* ~ £'* for central second derivatives and Hessians
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Minimisation in the language of calculus

The problem for a continuously differentiable f:

0 := arg min f(9)

feRd

can be reformulated via 15t- and 2"%-order conditions:
{6:V(6)=0 and V(6)is pos. semi-defl},

where V, is the gradient and V]? is the Hessian.

If multiple such points exist, declare 8 to be the candidate
yielding the smallest value f.
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Gradient visualisation

Live demonstration time!
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Minimisation / FOC solving

- Which one is easier: to search for 6 by checking if (1) it
yields a reduction of f, or (2) if brings V; closer to 0?
* Itis easy to get an idea about the general shape of the
function by directly evaluating it at some points
- If (6,) < f(8,), then, 6, is a better candidate solution

- The gradient information, on the other hand, is hard to
interpret or manipulate

« The curvature of f may differ w.r.t. coordinates of 6
» Solving V¢(6) = 0 is equivalent to minimising the length
of the gradient: min, ||Vf(6)|| in some metric (Euclidean,
Manhattan, variable etc.)
» If 6 solves the FOC equation system, then, [[V/(6)]| = 0
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Types of optimisation

Unconstrained vs constrained

+ Budget constraints; positive portfolio weights adding up to
unity; constrained parameter space (negative price
elasticity, positive foreign price elasticity of demand)

Global vs local
- Global optimisation is much harder as it cannot be

guaranteed in the general case; we focus on local
optimisation and on multiple-local-optima checks

« Deterministic vs stochastic
- Random initial values or iteration rules have large benefits

but come at a computational cost
 Low-dimensional vs high-dimensional
 High-dimensional problems deserve a separate course
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Common issues in optimisation

Sensitivity to function/parameter scaling
« Multiplying f by 1000 should not affect the algorithm
« Recall session 1: computers do not like mixing small and
big numbers; preferred order of magn. of f and 6 is 0.1-10
Non-smooth functions
« Quantile regession, maximum score for non-parametric
dicrete choice, non-smooth utility, conditional VaR
(expected shortfall), binary predictions
Premature convergence to local optima
« Arises if theoretically the parameters are identified but the
data available do not produce an objective function of the
shape that guarantees global convergence
Too many parameters
+ Slow convergence, ill-conditioned matrices
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Ideas behind optimisaton algorithms

1. Start somewhere
« The user must supply an initial value 6, for which f(6) € R

2. Determine which coordinates of 6, should be changed
and by how much to get f(6,) < f(6,) for some 6,
3. Repeat many times until the stopping criterion is met
(recall Session 1, ‘Loop termination’):
» grad.tol, the gradient is close to zero: [[V{6,)ll, < €
- rel.tol, the relative improvement is close to zero:

f(6y) = f(B,q) < €

+ rel.xtol, the relative change of 8,,, dictated by the

6.1~k
R

<&

algorithm is close to zero: max

NB. Maximum iterations reached # convergence!
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Accuracy limits in optimisation

Minimise f(6) = %e‘* - §e3 + §e2 8 S0+ and find the local
optimum around 2/3 (left).

Derivative: V/(6) = 6° - 262 + 26 - 2 = (6 - 2/3)? (right).

T! o
& om0
ad o o om
clb =) o coOwo
-------- CENDCEARD OISO - - - - - -
™ é OUmnd COOMOCDO O
oamm O
@O
o 8 am o
o | @D
T g @
& T T T 1 © T T T 1
0.666660 0.666670 0.666660 0.666670

Numerical methods can return 8 € 0.66666 +[0.1,1.2]- 107°.
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Error maghnification factor

Requesting the optimiser to stop if some tolerance is < €
does not guarantee solution accuracy up to t¢. The
maximum accuracy that one can obtain does not exceed the
error maghnification factor (EMF).

EMF depends on the problem. In economics, many
problems are written as linear equations A8 = b (or = b).

EMF = [IAll, - A"l

lIAll,, = max; Z]f'ﬂ |A,.j| = max. row sum of abs. values.

If EMF =~ 10%, k accuracy digits are lost. k = 11 (previous
problem) = 16 — 11 = 5 digits are accurate.
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Example: EMF for bare-bones OLS

An economist estimates a regression of mpg on all other

variables from the mtcars data set using OLS via matrices:
n

mpg = B, + B,cyl+ ..+ B,carb+U=X'B+U, A= % XX

i=1
X <- cbind(1, as.matrix(mtcars[, -1]1))
A <- crossprod(X) / nrow(mtcars)
max (rowSums (abs(A))) # 117619
max (rowSums (abs(solve(A)))) # 1895

Manual approach yields max. rel. error
mach.eps/2- Al -IA7"|| =2-1078,

If possible, use functions from well-tested libraries (LAPACK,
Armadillo etc.); do not re-invent the wheel.
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Example: Wilkinson polynomials

Some functions have poor convergence in optimisation.

Searching for the roots of the polynomial of the form
W, (68)=(0-1)-(6-2)-..-(6-n)=TIp_,(6 - k), one can get
poor numerical solutions. (May arise in repeated derivation:

n
;(—nxe has these components.)

Obviously, W,,(16) = 0, but the numerical solution
0 ~ 16.00003 (default tol = 1.2e-4) has w(8) > 0:

w <- function(x, deg = 20) prod(x - 1:deg)
r <- uniroot(w, interval = c(15.9, 16.2))
print(r$root, 12) # 16.0000256241
w(r$root) # 804218432, not a typo
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Linear programming

Finding the optimum of a linear function subject to linear
constraints:

mein c’6 subjectto A = b,
where dimc =dim6 =d,dimb =m, dimA = (m x d).
« Operations research

- Company management

« Maximise profits and minimise costs with limited
resources

Dantzig’'s simplex algorithm, criss-cross algorithm etc.

‘Programming’ really means ‘optimisation’.
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Linear programming example

A construction company erects bunkhouses and cabins.
Each building requires beams, wall panels, and planks.

Material Bunkhouse Cabin Material stock, €

q Beams 1 2 100

” \\ Wall panels 3 1 150
ﬁ Planks 0 4 160
Sell price 10 30
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Linear programming questions

1. What is the construction plan (bunkhouses and cabins)
that maximises the revenue?

2. If there are leftover materials after construction, which
short-supply materials are to be bought to use them up
with maximum profit?

31/128



Linear programming visualisation

o _ .
3 Cabins Revenue
L]
gy (planks) 700
o _|
s
o |
o
o
o™
o |
o

0 10 20 30 40 50

It is not really about optimisation, it is about finding which
constraints are actively binding.

Empirical research in Econ+Fin+Mgmt using R. © Andrei V. Kostyrka, Université du Luxembourg, 2023 32 I 128



Linear programming solution

b+2c-100
3b+c-150
max10b +30c s.t. g(b,c) = c-40 <0
-b
—C

- (b, ¢) = (20, 40)

- Constraint 2 is not binding: 3b + ¢ = 100, therefore,
€50 of panels are left over

- At (b, ¢), +1 bunkhouse requires +€1 of beams and uses
€3 of panels; with 50 unused WP, one could buy €16 of
beams and build 16 more b (profit 16 -9 = 144)
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Linear programming in R

The 1p() function from 1pSolve does the job:

revenue <- c(10, 30)
cost <- cbind(c(1, 3, 0, 1, 0),
c(2, 1, 4, 0, 1))

budget <- c(100, 150, 160, 0, 0)

f.dir <- c(rep("<=", 3), ">=", ">=")

0 <- 1pSolve::1p(objective.in = revenue,
const.mat cost, const.dir = f.dir,
const.rhs budget, direction = "max")

olc("objval", "solution")]

#> $objval $solution
#> 1400 20 40

It is an interface to the 1p_solve 5.5 C library (can do more
than the 1pSolve R interface).
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Quadratic programming

Finding the optimum of a quadratic function subject to
linear constraints:

mein %G’QG +c’6 subjectto A6 > b,
where Q is symmetric and dimQ = (d x d).

The solution is analytical; finding the active constraints is
the main job.

Examples: OLS, LASSO, convex non-parametric regression.
« Goldfarb-ldnani dual method (quadprog: :solve.QP)
« Interior point (ipoptr::ipoptr)
« Augmented Lagrangian (nloptr: :auglag)
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Quadratic programming example

Suppose: due to the lack of free labour and equipment, the
revenue function is tapering off with respect to b and c.

ngicn[—f(b, c)] = -[10b — 2(b — 15)? + 30c — (¢ — 32)?]

quadprog: :solve.QP() has a slightly different syntax:
solve min(—c’6 + 0.56’Q0) with the constraints A’6 = b:

, -100
(4 O 70 -1 -3 0 10 -150
mln 9(0 2)6—(94)9, (_2 1 -4 0 1)92(—1860)



Quadratic programming implementation

Q <- 2 % diag(c(2, 1))
c <- c(70, 94)
cost <- rbind(c(-1,-3,0,1,0), c(-2,-1,-4,0,1))
budget <- c(-100, -150, -160, 0, 0)
0 <- quadprog::solve.QP(Dmat = Q, dvec = c,
Amat = cost, bvec = budget)
o[c("solution", "unconstrained.solution")]
#> 17.5 40.0 constr, 17.5 47.0 unconstr
which(o$Lagrangian != 0) # 3rd active constraint

One can construct only integer houses; check the remaining
budget - 3 beams and 59 panels remain:

crossprod(cost, floor(o$solution)) - budget
# 3 590 17 40
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Quadratic programming visualisation

8 7 cabins Revenue
L IN0)
g; (planks) 700
o _| .
3

30

20

o - Bunkhouses

[ T T T 1
0 10 20 30 40 50

QP is also about finding the binding constraints.
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Convex optimisation

Finding the optimum of a convex function with constraints:
mein f(x) subjectto g(x)=0,

where both f and g are convex:

f(a61 + (1 - a)ez) s af(61) + (1 - a)f(ez)

Every local minimum is a global minimum.

- Descent methods (gradient, steepest, Newton's)
- V-based, V?-based (exact or approximate)

* Interior-point methods
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Linear vs. non-linear problems

If the problem is linear in parameters (A6 = b) and

1. There are as many equations as there are parameters,
2. All equations are consistent,

3. The matrix A is full-column-rank,
then, 6 := A~'b is the unique solution.
If the problem is non-linear:

- Try many-many reasonable candidate points,

- Or consider a simpler problem (e.g. assume some
parameter values),

« Or linearise the problem around a candidate 6.

Solve a sequence of simpler problems, check the FOC+SOC.
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General optimisation solution

If solving the FOC to obtain the solution is impossible, we
start from any candidate B and look for an improvement.

If f(B) > f(B) > f(B) > ..., we continue guessing until there is
little to no improvement to the value of f.

Once a good enough candidate f has been found, check the
FOC (necessary) and SOC (sufficient):

Vf(B) =0, VfZ(B) = pos. def.

If these two conditions hold, declare f to be a strict local
minimum (or simply a local minimum if V]?(B) is PSD).
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Any questions on the mathematical concepts behind
optimisation?



Gradient-free methods




Derivative-free optimisation is fun

l‘ Make a joke about derivative-free optimisation.

@ Why did the derivative- optimiz 2t invited to all the parties?

Because it always knew how to find the maximum fun without taking any di
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Grid search

If a reasonable range for the optimal parameter is known,
one can try all the variants!

 Generate a lattice of parameter values

« Evaluate the objective function at all points

* Pick the point with the minimum value

« Refine the grid around the optimum if necessary

Pros: exhaustive; with fine enough grid, finds the optimum;
with a large enough grid, finds the global optimum.

Cons: very costly curse of dimensionality: requires n‘gj}{g o

evaluations.
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One-dimensional grid search

« Generate a sequence from 6

to 6

min max

of chosen

length n (as many as the resources allow)

« Plot (8, f(0))

- If the optimal value is in the interior, choose it
« If the value is on the boundary, extend the grid

f <- \(x) -log(x) + x
xseq <- seq(0.2, 3, 0.25)
yseq <- sapply(xseq, f)

plot(xseq, yseq)

xseq[which.min(yseq)] # 0.95
NB. No guarantee of exactitude -

refine on

2.0

15 4

1.0

0.5

0.0 ~

xseq[which.min(yseq)+c(-1,1)].

05 10 15 20 25 3«
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Two-dimensional grid search

Without vectorising the function f(x, y), the quickest way to
obtain a 2D lattice is as follows:

« Create a matrix of all combinations of 2 parameters from
two vectors

« Create a vector of values f(x,y)
- Parallelise this computation over all rows of the matrix

« Wrap this vector into a matrix and visualise it
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2D grid search example

f <- function(x) -(2 + log(x[1]+1.9) - 0.6%x[1]
+ log(x[2]+1.8) - 0.7*x[2])

xvec <- seq(-1.2, 1.4, length.out = 51)

yvec <- seq(-1.4, 1.4, length.out = 41)

Xy <- as.matrix(expand.grid(x=xvec, y=yvec))

zvec <- unlist(parallel::mclapply(
1:nrow(xy), \(i) f(xy[i, 1), mc.cores = 4))

# zvec <- apply(xy, 1, f) # No parallel

zmat <- matrix(zvec, nrow = length(xvec))

opt <- xy[which.min(zvec), ]
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2D grid visualisations
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Partial grid search

The objective function may behave better w.r.t. some
parameters and fluctuate wildly w. r.t. other ‘wicked’ ones.

If certain parameters are fixed, the function may become
linear / quadratic in a sub-set of parameters - easy

solution.
+ Generate a lattice of ‘wicked’ parameters

« For each combination of those, keep them as fixed and
optimise the function w.r.t. ‘nice’ parameters

« Compare the optima and choose the ‘wicked’
parameters that yielded the best solution
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Application #1: hyper-parameter search

XGBoost has many tuning parameters: number of boosting
rounds, learning rate, minimum loss reduction for partition,
maximum tree depth, regularisation term on weights etc.

Generate a grid of all combinations, run XGBoost for each of
then, and choose the combination that minimises the
out-of-sample prediction error on test data.

pars <- expand.grid(
nrounds = c(2, 5, 8), eta = c(.2, .3, .4),
gamma = c(0, 0.01, 0.03), maxdepth = (1:5)%2,
lambda = c(0.5, 1), alpha = c(0, 0.5))

#> nrounds eta gamma maxdepth lambda alpha

#> 2 0.2 0 2 0.5 (0]
#> 5 0.2 0 2 0.5 0
#> <...>

#> 8 0.4 0.03 10 1 0.5

49 [ 128



Application #2: estimating returns to scale

A researcher interested in returns to 9 T
scale in a Cobb-Douglas-like produc- = 7 i
tion function is fitting the curve o | -
Q=B,+B,kP2+U, K>O0. r
w0 Y A

(AKA ‘Box-Cox transformed regres- e
sors’; assume that K is exogenous.) o | **- K

. . [ T T T 1
B, > 1: increasing return to scale. o 2 4 & 8

The coefficients (B, B,, B,) are estimated with 100 data
points via non-linear least squares:

minf(B) = > (Q; - By - ByK; )

i=1
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NLS problem, necessary conditions

n

min £(8) = (@, - By~ ByK{ 2

i=1

Deriving the first-order conditions, Vf(B) 0:

9

5,10 25~y Bk ’32)=
ﬁ (B) =-2 Z,‘(Qi - Bo B1 ) =0
s}

a5, (B) = —2%,(Q; - By — ByK; )131 logK =

3 equations with 3 unknowns... but they are non-linear! No
general solution available. (Only B, = Q - ,kP2.)
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Partial grid search example for NLS

Q=PB,+B,kP2+U, B=(2,0.5,1.6)
Note that if B, is fixed, the problem can
be solved by OLS!

Step 1. Use a grid of values B, = (1.00, _
1.01, .., 1.99,2.00). For each B,, minimise o > + o &

f(BO’ B1 ’ BZ) W.T. t_ (BO' B']) (USIng OLS). Sum of squared residuals

Step 2. Choose the B, that minimises the
sum of squared residuals.

15

10

110 120 130 140 150

Here, B, = 1.65, yielding — "
(BO’ B1) - (2.21’ 0.43). 10 12 14 16 18 20
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Grid-evaluation implementation

set.seed(1)

n <- 100

X <- sort(rchisq(n, df = 2)) + 0.5

f <- function(x, b) b[1] + b[2]*x"b[3]
Y <- f(X, c(2, .5, 1.6)) + rnorm(100)

b2.grid <- seq(l, 2, 0.01)

rss <- function(b2) sum(resid(im(Y ~ I(X*b2)))"2)
rss.grid <- sapply(b2.grid, rss)

b2.opt <- b2.grid[which.min(rss.grid)] # 1.65

# Now computing bO and bl for this fixed b2

b0l <- coef(lm(Y ~ I(X"b2.0pt))) # 2.213 0.434
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Drawback of grid-assisted optimisation

1. The FOC might be inexact if the grid is not fine enough
+ In the example above, Vf(B) =(0,0,-0.74) # 0
« Solution: refine the grid
2. Not suitable for problems with too many parameters
responsible for complex behaviour of f
« The grid in high dimensions is very sparse
3. Requires inspired guesses about the plausible values of
fixed parameters
+ Unlucky guesses may result in non-global local optima

4. For economists: Inference is complicated (how to
compute standard errors?)
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Deterministic derivative-free optimisation

If one function evaluation is costly, then, instead of a grid,
only one initial value must be chosen.

+ Choose an initial value 6,

- Evaluate f at several points around 6,

« If the function value becomes lower at some 0, #0,
evaluate f at several points around 6,

« Continue evaluating in the vicinity of new ‘best’ points
until no improvement can be found or the maximum
number of iterations has been reached
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One-dimen. optimisation on an interval

If f is differentiable in [a, b], then, minimising f is
equivalent to finding all 6*: f(6*) = 0 and checking the
second-order conditions.
Numerical derivatives can be
unstable or inaccurate:
« X+ his rounded towards the
nearest representable [x + h]

 f([x + h]) is rounded towards the
nearest representable f([x + h])

- If f is unimodal, f may be not

Therefore, only f should be used to locate the optimum.
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One-dimensional minimisation in R

« Choose an interval known to contain the minimum

- Use bisection / golden section / parabolic interpolation

optimise() returns a list with two values: estimated

minimum and function value at the minimum.

f <- \(x) x - 2%¥log(x)

0 <- optimise(
interval=c(.1, 3.5),
f = f, tol = 1le-8)

print(unlist(o), 16)

#> minimum 1

#> 2.00000000025565 T T T T

#> objective 00 1.0 20 30

#> 0.61370563888011

N W b
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Issues with tolerance

Tolerance means different things in different optimisers:
gradient tolerance, Af tolerance, or A6 tolerance.

In optimise (), tol determines the contraction limit: fis
never evaluated at two points closer than 6*\/¢ + tol/3.

Therefore, setting tol = 1e-12 or 1e-15 yields no change.

- Always check the stopping criterion in a method

 Regardless of the method, requesting anything tighter
than € makes no sense
« In most applications, /€ = 1.5e-8 is sufficient

- Numerical optimisers can rarely do better than ./ relative
accuracy; therefore, all subsequent calculations will be
only this accurate
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Nelder-Mead simplex method idea

It is so good, it is the default in R optim().
- Given a starting point in d-dimensional space, construct
a simplex of a small radius

« Reflect, compact, expand, or shrink the simplex
depending on their configuration relative to the centroid

« Terminate when the simplex size is small enough
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Nelder-Mead visualisation

Live demonstration time!

Line 685 in sessionB6.R
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Nelder-Mead implementation

Default method in optim():

library(mvtnorm)

f <- \(x) # Our bimodal function
-0.25*dmvnorm(x, mean=c(1,1), sigma = diag(2)/2)
-0.75*dmvnorm(x, mean=c(2,3), sigma=diag(2))

0o <- optim(par = c(0, 0), fn = )

Track the progress via control list:

optim(c(0, 0), f,
control = list(trace = 2, reltol = le-6))

#> Nelder-Mead direct search function minimizer

#> function value for initial parameters = -0.010949
#> Stepsize computed as 0.100000

#> BUILD 3 -0.010949 -0.013264

#> EXTENSION 5 -0.013241 -0.019132

#> LO-REDUCTION 7 -0.013264 -0.019132

#> ...
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Coordinate descent

Popular approach (e. g. used in LASSO regression).
« Choose an initial value 6,

« For all coordinates 981), . ef)k):
1. Find the direction of the decrease - either left or right
2. Move in that direction until the function starts growing
again
3. Do the same for the next coordinate

- Loop until convergence

Not too hard to implement manually.
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Mesh adaptive direct search (MADS)

Remember grid search? This is an improvement: create
variable-size meshes and refine them.

dfoptim: :mads() implements this method.

85 =1, a=1 . At=1 g =1
e s ”
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Any questions on gradient-free methods?



Gradient-based methods




Descent methods

Suppose that f is to be minimised and one has an initial
value 6,,.

1. Find a direction t (a vector) in which f decreases (i.e.
f(8, + €t) < f(8,) for a very small €);

2. Try making a step in that direction, evaluate f(6, + t)
« If an improvement has been attained, let 8, = 6, + t, go to
step 1
« If (6, + 1) > f(8,), try shrinking the step: take some
B € (0, 1) such that f(6, + Bt) < f(6,); go to step 1

Stopping rule: if the gradient, function change, or step is
close to zero, terminate.
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Example: Gradient descent in 1D

f(6)=6-logh, V,=1-1/6
Initial value and step: 6, = 2.5, —vf(eo) = —0.6.

00 05 10 15 20 25
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Example: Gradient descent in 1D (steps)

£(6)=6-logh, V,=1-1/6

We are to the right of the global minimum, therefore, the

correct direction is left (negative steps).

Iter 6 f(6) step = - f(e)
1 2.50000000 1.58370927 -0.60000000
2 1.90000000 1.25814611 -0.47368421
3 1.42631579 1.07122104 -0.29889299
4 1.12742280 1.00748848 -0.11302131
5 1.01440149 1.00010272 -0.01419703
6 1.00020446 1.00000002 -0.00020442
7 1.00000004 1.00000000 -0.00000004
8 1.00000000 1.00000000 1.78e-15
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Example: Gradient descent in 1D (plot)

£(6)=6-logh, V,=1-1/6

25

15 2.0

1.0

0.5
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Initial value matters

Now we start from 90 =0.1.

£(6)=6-logh, V,=1-1/6

Iter 6 f(6) step = - f(e)
1 0.10000000 2.40258509 9.00000000
Substep: step too large (f = 6.89), halving.

Substep: step too large (f = 3.07), halving.

2 2.35000000 1.49558467 -0.57446809
3 1.77553191 1.20143187 -0.43678850
4 1.33874342 1.04701199 -0.25303088
5 1.08571254 1.00347605 -0.07894589
6 1.00676665 1.00002279 -0.00672117
7 1.00004548 1.00000000 -0.00004548
8 1.00000000 1.00000000 2.07e-09
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Backtracking

25

2.0

1.0

0.5

If the search direction is correct but the step size does not
yield a reduction, backtracking (step shrinking) is needed.
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One-dimensional quadratic functions

The equation of a parabola: B g
y=ax?>+bx+c
Its vertex is located at x* = —%.

Vy=y’=20x+b,vf=y”=2cl.

« At any point x,, it suffices to make a step of size

b . by_ b
—(xg + %) to end up at the vertex: x, — (x, + %) ==
- Expressing the step size via Vy and Vf:
_vy(x)=_20x+b=_ b
V2(x) 2a 2a

This is true Vx € R!
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Quadratic function optim. via derivatives

If at any point x, € R, one computes V,(x,) and Vf(xo),

is the global optimum of y(x)!

If one-dimensional y(8) is defined in the software and turns
out to be quadratic, then, it suffices to compute the first two
derivatives to find the global optimum.

Numerical algorithms for evaluating derivatives are usually
available in good statistical packages (not EViews).
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Example: one-dimensional quadratic

Let y be a quadratic function with mysterious coefficients.
 Ask R to evaluate y’ and y”
at x, = 4.5
« Rreturns y’(4.5) = 2.5, y”(4.5) = 1
- Stepsize: -y’ Jy” =-2.5/1=-25
« Therefore, x*=45-25=2

-1 0 1 2 3

o
N
i
[=2]

Forsooth!
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Multi-dimensional quadratic functions

Now consider a multi-variate quadratic function:
f(B):=0'A0 +b’'0 +,
where A is a symmetric matrix of full column rank.
Vi) =248 +b, V;(6)=2A
Solving V(6) = 2A8 + b = 0 yields 6" = —-0.5A7"b.
At any 6, the global optimum is found by evaluating
0y + (197 (B,)1 - VH6,))

inTtTal ste
value P
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Example: multi-dimensional quadratic

Let f be a quadratic function of two pa- (g
rameters with mysterious coefficients. ™

2 _
+ Evaluate V; and V? at 6, = (2) 5
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» Rreturns V() = (1),
Vf(f:) = (1?5 145)
- Step size: (% 2) 7 (44) =
-55(-1s 3°)(h) = 550
+ Hence, 6= ({)-(3) = (3)
The computer returned the correct an- : |
swer with just 2 vectors and 1 matrix!



Multi-dimensional convex functions

Suppose that the objective function f is not quadratic, but
just strictly convex.

Then, the local minimum is the global minimum, and the
problem has at most one optimum.

If f is also strongly smooth (i. e. V]? is bounded), one can use
gradient descent to find improvements such that

f(6,.1) < f(6,), and the algorithm is guaranteed to converge
geometrically.

If only v, is bounded but not V2, convergence is simply
slower.
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Quadratic approx. of convex function

Suppose that we approximate a convex function f in the
heighbourhood of some value 6, with a quadratic function
g using second-order Taylor series:

£(8) = q(8) = £(8,) + V7 (8,)(6 — 00)* 5 e~ 6,)' V7 (8,)(8 - 6,)

Then, we can solve the ‘wrong’ problem of minimising g and
(hopefully) become closer to minimising f.
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Newton—(Raphson) method

Take a valid initial guess 6,,.

1. Compute V; and V)? at the current guess via numerical
differentiation

2. Let B,,,, = 0, — [VZ(8,)]'VL(6,)

3. Repeat until the stopping criterion is met
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Newton method example

Live demonstration time!
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Problems with Newton-(Raphson) method

« Can break down if sz is degenerate (i. e. f not strictly

convex or even hon-convex)
- Therefore, can diverge if the step is huge
- Remedy 1: diagonalise V?, keep the eigenvectors, replace
the negative eigenvalues with € > 0, convert back
« Remedy 2: add Al for a sufficiently large A (as A — oo,
Al + V]? = Al = the NR method becomes gradient descent
with step 1/A); also known as Tikhonov regularisation
(used in ridge regression)

- Can be trapped in a loop
» Quite rare with real-world data

Improvement: back-tracking, i. e. multiply the step at each

iteration by B € (0, 1)
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Exact line search

If a step is too large, we shrink it by a factor of B, but how
do we know if it could be too small?

For any 6, for any valid descent direction t such that

f(6, + €t) < f(6,), find the optimal step size s that yields the
lowest f(6, + st).

This method transforms a multivariate optimisation
problem to a univariate one.
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Simplest line search variant

At any step of the descent, start with s = 1 and span
multiplier a = 0.2.

1. Evaluate f, = f(6, + (1 - a)st), f, = f(6, + st),
f3 = f(eo +(1+a)st)
« If f, < min(f,, f;), then, s is too large; multiply s by (1 - a);
« If f3 < min(f,, f,), then, s is too small; multiply s by (1 + a)
« If f, <min(f,, f3), the bracket is too wide; multiply a by 0.8

2. Repeat until a < 0.02 (at most 10 times)

This is quick, dirty, and inaccurate for the sake of clarity.
There are much better implementations (Brent’s method,
golden-section search etc.).
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Dropping the Hessian

In applied work, Hessians are usually not computed directly:

« If dim 6 = k, computing V?f(6) takes k? operations -
slow
- If f() exhibits near-linear behaviour, inverting V2f(0) is
problematic
« Numerical V2f(8) may be very inaccurate
+ Ill-conditioned
« Non-symmetrical

« Inaccurate due to repeated (instead of one-time)
differencing

V2f is typically substituted with a completely different
object to allow more iterations in the same time.
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Inexact line search

Steepest descent makes updates of the form
611 = B — 0, V(6),)
The greedy exact search chooses a,, as

argmin f(6, — an(Gk))
a0

This search method may behave poorly in practice. If the
contour lines of f resemble long valleys, the sequence {6,}

displays a zig-zagging trajectory; the speed of convergence
is very slow.
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Weak Wolfe conditions for step size o

Define directional derivatives for a unit vector v:

. 8 +hv)-f(O
vvf(e) = ,El_r)%f( ‘;1) f( )= f(e)/v

1. Sufficient decrease (Armijo condition), ¢, = 0.0001:
£(8, + av,) < £(8,) + ¢,av, £(6)

2. Curvature condition (c, > c,, ¢, < 1,¢c, = 0.9):
V.f(6, +av,)v, = c,V,£(6,)

(1): The decrease should be at least a small fraction (c,) of
the gradient. (2): The slope at the new point should be at
least ¢, times the original slope.
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BFGS optimiser

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm: the
most popular gradient-based technique. (One of the best
ones in practice for problems in economics, to0o.)

Take 6, I-70 =Bl. LetA, = H:' be the approximation of the
inverse Hessian. lterate:

« Choose the line search direction v, = —A,Y(6})

+ Choose the step size a, satisfying the weak Wolfe
conditions and set 6,,, = 6, +a,v,

* Apply a very clever formula to update A, directly without
any inverses and without computing H,, directly

Ba1)-f(6p)l

Stop when I 6 <rel.tol (typically 1e-8).
k
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BFGS with memory or box constraints

L-BFGS: limited-memory BFGS. Does not store the matrix A,,
computes it from the last few m values of f and V.

BFGS-B: BFGS with box constraints, i.e.0<6 < 6. Identifies
fixed and free variables at every step, updates free
variables only.

R has optim(..., method = "BFGS") and

optim(..., method = "L-BFGS-B"). In practice, go for
vanilla BFGS (unless the dimensionality of the problem
consumes the RAM): more accurate.

The 1bfgsh3c package provides an updated (2011)
L-BFGS-B version.
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BFGS example function shape
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Left: original function. Right: input to optim().
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Calling BFGS without gradients

f <- \(x) # Our bimodal function
-0.25*mvtnorm: :dmvnorm(x, mean=c(1,1), sigma = diag(2)/2) -
0.75*mvtnorm: :dmvnorm(x, mean=c(2,3), sigma=diag(2))

ctrl <- list(reltol = 1e-8, trace = 2,
REPORT = 1, ndeps = rep(le-5, 2))
ol <- optim(c(0, ©), f, method = "BFGS",
control = ctrl)
02 <- optim(c(4, 4), f, method = "BFGS",
control = ctrl)

NB: ndeps is very important for numerical accuracy. Recall
that h* ~ /e for central differences, but the default is 0.001
- too large.
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Initial value matters

str(ol)

#>
#>
#>
#>

$ par

$ value
$ counts
$ convergence:

str(o2)

#>
#>
#>
#>

$ par

$ value
$ counts
$ convergence:

:num [1:2] 1.09 1.18
: num -0.0915
: Named int [1:2] 28 26

int 0

s num [1:2] 1.99 2.98
D num -0.12
: Named int [1:2] 40 36

int 0

Which one is better? Are we sure that there are no other
local optima?
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Multi-start

Generate starting values randomly in a hyper-cube (other
methods may be more appropriate). Here, we try 10 points:
set.seed(1)

initval <- matrix(runif(2%10, 0, 10), ncol = 2)
doOpt <- function(x) {

ret <- optim(par = x, f, method = "BFGS",
control = ctrl)
c(start = x, end = ret$par, val = ret$value)

}
res <- t(apply(initval, 1, doOpt))
res[order(res[, "val"l), 1]

startl start2 endl end2 val

2.6551 2.0597 1.9902 2.9804 -0.1199 # <-- best start
3.7212 1.7656 1.9902 2.9804 -0.1199

6.2911 3.8004 6.2874 3.7997 0.0000

<oo0>

9.4468 7.1762 9.4468 7.1762 0.0000
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Importance of convergence codes

Always check the convervence code. code = 1 = maximum
iterations reached = convergence not achieved. The exit
code must be zero.

However, the zero exit code is a necessary but not sufficient
condition for declaring success and moving on.

- If the exit code is 0 but the counts are 1, the optimiser
did not do any work at all and did not move anywhere

« Function with no global minima might still yield
convergence = 0 when the f tapers out into a plateau
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Silent failure example

optim(c(10, 10), f, method = "BFGS",

#>
#>
#>
#>

control = ct
$ par :
$ value
$ counts
$ convergence:

ri)

:num [1:2] 10 10
D num -3.46e-26
: Named int [1:2] 1 1

int 0

Counts: the optimiser stopped after the first iteration.

Reason: the function is almost flat in that area.
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False convergence example

The user may forget to multiply the ‘good’ function for
maximisation by —1, and the optimiser minimises, moving
away from the desired maximum.

f2 <- \(x) -f(x)

optim(c(4, 4), f2, method = "BFGS",
control = ctrl)

#> $ par :num [1:2] 7.54 5.77
#> $ value : num 5.65e-10
#> $ counts : Named int [1:2] 27 26

#> $ convergence: int 0
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Nonsensical convergence example

Linear functions cannot be globally optimised:

g <- function(x) x[1] - x[2]
optim(c(4, 4), g, method="BFGS", control=ctrl)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

initial value 0.00060000

iter 2 value -2.000000

iter 3 value -4.000000

iter 4 value -180143084373.758240
iter 4 value -180143084376.809998
final value -180143084376.809998
converged

$ par :num [1:2] -9.01e+10 9.01e+10
$ value : num -1.8e+11

$ counts : Named int [1:2] 5 4
$ convergence: int 0

However, the exit code is still zero.
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BFGS with analytical gradients

Optimise the famous Rosenbrock ‘banana’ function:
f <- \(x) 100 » (x[2] - x[1]*2)"2 + (1 - x[1])"2

nablaf <- \(x) {

c(-400 * x1x(x[2]-x[1]172) - 2x(1 - x[1D]),

200 * (x[2] - x[1172))

}
optim(c(0.9, 0.9),
fn = f,
gr = nablaf,

method = "BFGS",
control = ctrl)
#> $ par 11
#> $ value : 1.54e-19
#> $ counts: 33 16
#> $ convergence: 0
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Non-convergence example

The Rosenbrock function is famously slow to converge if the
initial value is not close to the optimum (1, 1).

The conjugate gradient in optim() fails:
optim(c(-1.2, 1), fn = f, method = "CG")

#> $ par : -0.765 0.593
#> $ value : 3.11
#> $ counts : 402 101

#> $ convergence: 1

Increasing the number of iterations helps:

optim(c(-1.2, 1), fn = f, method = "CG",
control = list(maxit = 10000))

# $ par 01 0.999
#> $ valuve : 8.12e-08
#> $ counts ;19938 4975

#> $ convergence: int 0
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Diagnosing non-convergence

+ Increase the number of iterations

« If dim 6 = 2, simply visualise the function in 2D via
contour() or 3D via persp()

« Try a wide range of starting values
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Other gradient-based optimisers

« nlm(): more fragile, requires gradients, but for
functions looking like quadratics, beats BFGS in terms of
convergence speed

- Best convergence check: gradient tolerance
« nlminb(): similar to BFGS, supports box constraints
« Can rely on the supplied Hessian
* Rsolnp::solnp(): supports box constraints, g(6) = 0,
and h<h(@)<h

- optimx: a package containing multiple Quasi-Newton
optimisers: conjugate gradient (Fletcher & Reeves),
quadratic approximations (Powell)

« nlm support is not fully featured
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optimx: unifying framework

Try many optimisers and compare their performance:

c(-1.2, 1), fn = F,

control = list(kkt=TRUE, all.methods=TRUE))

library(optimx)
o <- optimx(par
gr nablaf,
pl p2
BFGS 1.00000 1.00000
CG -0.76483 0.59275
Nelder-Mead 1.00026 1.00050
L-BFGS-B 0.99999 0.99999
nlm 1.00000 1.00000
nlminb 1.00000 1.00000
spg 0.99980 0.99960
ucminf 1.00000 1.00000
Rcgmin 0.99999 0.99999
Rvmmin 1.00000 1.00000
newuoa 1.00000 0.99999
bobyga 1.00000 1.00001

NNERPNNWDNRENOW-O

value fevals gevals niter convcode

.5949e-18
.1065e+00
.8252e-08
.2675e-13
.1820e-20
.2919e-22
.8980e-08
.7256e-17
.6795e-14
.2325e-32
.1777e-15
.8448e-13

110
402
195
47
NA
43
141
38
111
59
257
290

43
101
NA
47
NA
36
NA
38
54
39
NA
NA

NA
NA
NA
NA
24
35
112
NA
NA
NA
NA
NA

0
1
0
0
0
0
0
0
0
2
0
0

kktl
TRUE
FALSE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

kkt2
TRUE
FALSE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

xtime
.000
.055
.000
.000
.000
.000
.004
.000
.001
.003
.001
.001

[c¥oloNolofooNoRoNoR ol ol

99 /128



Constrained optimisation via NLopt

NLopt is a great cross-platform library for optimisation with
inequality and equality constraints.

min f(0), 6 e R*
s.t. g(8)20, h(6)=0, 6<60<6

Inputs:
* fand V;
« If analytical v is unavailable, provide a numerical one
« Optional: g and 1A
« Optional: h and V,
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https://nlopt.readthedocs.io/en/latest/

NLopt in action

Maximising the function from Slide 9 via augmented
Lagrange multiplier method:

library(mvtnorm)
f <=\
-0.25%dmvnorm(x, mean = c(1, 1), sigma = diag(2)/2)
-0.75%dmvnorm(x, mean = c(2, 3), 51gma = diag(2))
fp <- \(x) numDeriv::grad(func = f, x = Xx)

g <- \(x) x[1]*2 + x[2]*2 - 4
gp <- \(x) matrix(2*x, nrow = 1)
0 <- nloptr::nloptr(x0 = c(2, 2),
eval_f = f, eval_grad_f = fp,
eval_g_eq = g, eval_jac_g_eq = gp,
opts = list(algorithm = "NLOPT_LD_AUGLAG_EQ",
local_opts =
list(algorithm = "NLOPT_LD_MMA", maxeval = 100),
maxeval = 1000, print_level = 3))
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NLopt output

print(o)

#> Minimization using NLopt version 2.7.1

#> NLopt solver status: 4 ( NLOPT_XTOL_REACHED:
» Optimization stopped because xtol_rel or xtol_abs
- (above) was reached. )

#> Number of Iterations....: 105

#> Termination conditions: maxeval: 1000

#> Number of inequality constraints: 0

#> Number of equality constraints: 1

#> Optimal value of objective function:

- -0.0867539596779702

#> Optimal value of controls: 1.292447 1.526297
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Any questions on gradient-based methods?



Stochastic methods




Stochastic optimisers

Deterministic algorithms suffer from the common malady:
they need a good initial value. Without a good initial value,
optimisation is doomed: the solver may diverge, or the
function may be not defined.

Knowing reasonable range enables the following heuristic:
» Randomly generate many-many points in a subset of
RYME evaluate f at them
- Discard failed / bad solutions

 Next time, generate many-many points in the range
where f was taking reasonable values

« Hope for improvement!
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How does one multistart?

Many deterministic searches are the poor man'’s stochastic
search:

« Generating many initial values and running many
optimisation problems is costly

+ Use some information from the literature to have a
range of plausible values

« optimr::multistart() provides a nice wrapper

« Rsolnp::gosolnp() retries if the solver fails
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Benefits of randomised search methods

« If fis non-smooth, discontinuous, or is numerically
unstable, can still work

- Gradient-based methods fail immediately
+ Deterministic gradient-free methods may fail, too
« Should not get stuck in local optima
« Under certain robustness conditions, given enough time
« May find the global optimum if it lies in the chosen
range
« Under certain conditions, given enough time
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Drawbacks of randomised search methods

* Very slow
« High-dimensional space is incredibly sparse
« The number of iterations is more important than the
‘population’ size at each iteration

« The FOC is not checked - may result in false convergence
or corner solutions

« An inspired guess about the range of parameter values
is still required
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Pure random search

Naive approach with very little a priori knowledge.

« Generate a cloud of points with a certain radius o at
centre p (e.g. ./, 0?))

+ Evaluate f, sort by value

* Find the best candidate

- Generate the next point cloud around the best
candidate with a slightly smaller radius

May be useful in picking initial values for deterministic
optimisers.
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Simulated annealing

Annealing: heating a material and cooling it down to reduce
internal stresses / hardness.

Terminology: ‘bad’ solution = high energy.

« Start with a random population and a ‘high temperature’
- Perturb the population proportionally to the ‘energy’
« Lower the temperature

In simple words: shuffle the worst points strongly, the best
points mildly.

optim(..., method = "SANN") is outdated — use
GenSA::GenSA() or optimization: :optim_sa().

108 /128



Simulated annealing example

f <- \(x) -0.25*mvtnorm::dmvnorm(x, mean=c(1, 1), sigma = diag(2)/2) -
0.75*mvtnorm: :dmvnorm(x, mean = c(2, 3), sigma = diag(2))

library(GenSA)

set.seed(1)

0 <- GenSA(fn = f,
lower = rep(-10, 2), upper = rep(10, 2),
control = list(verbose = TRUE))

0

#> $ value : -0.12

#> $ par :1.99 2.98

# $ trace.mat: 1 111222233...
#> $ counts : int 48120

Note: almost 50k evaluations!
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Particle swarm

Each point represents a ‘firefly’ flying through a
high-dimensional space.

- Each ‘firefly’ can travel a certain distance in one iteration
- Each ‘firefly’ has memory of its best position
- Each ‘firefly’ knows the position of each other firefly

Algorithm:

- Start with a random population moving in random
directions

« Update the vector speed of each member based on
3 components: (1) inertia, (2) current global best point,
(3) personal best point

« Move the swarm one step and repeat
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Particle swarm methods

- Standard PSO: the particles balance between the global
and best-known optima based on the topology

 Improved PSO: only the best ng particles are used for
speed updates

« Fully informed PS: all particles impact all particles

« Weighted FIPS: the contribution of each particle is
proportional to its goodness-of-fit

Try all of them, see what works.
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Particle swarm tuning parameters

« Number of iterations - crucial (the more, the better!)
+ Population size - not less than 10 + 2y/dim 8

« Method and topology

* ¢,, ¢, — importance of current global best and personal
best
« Can be adaptive and time-varying

Less frequency used: inertia weights, constriction factor,
regrouping, boundary behaviour.
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Particle swarm in R

The most complete package is hydroPS0.
Enable plotting to examine convergence visually:

f2 <- function(x) {Sys.sleep(0.02); f(x)}

library(hydroPSO0)
0 <- hydroPSO(fn = 2,
lower = rep(-10, 2), upper = rep(10, 2),
control = list(parallel = "parallel",
REPORT = 1, verbose = T, plot = T))

On Windows, use parallel = "parallelWin".

hydroPS0 writes all the information to disk — any
dimensions can be plotted.
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Differential evolution

Each point represents an animal living through a
high-dimensional space.

Algorithm:

- Start with a random population

Compute the fitness of reach animal

« Every point produces an offspring
« Cross-over: each ‘child’ is a linear combination of ‘parents’
« Mutation: this combination is imperfect

The least fit ‘animals’ may die

Repeat over multiple generations
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Differential evolution rules

Updates all points:

ei,t+1 = ei,t +F- (eiz,t - 6i1,t)
Update the best point:
6i,t+1 = 6best,t +F- (eiz,t - ei1,t)
Update current to best:
ei,t+1 = ei,t +F- (ebest,t - ei,t) +F- (eiz,t - 6i1,t)

Differencing = differential evolution.

115/ 128



Differential evolution parameters

« Number of iterations - crucial (the more, the better!)
« Population size - not less than 10 - dim 6

« Mutation rule

« CR - cross-over probability (0.5)

- F - differential weighting factor (0.8)

Less frequency used: % of surviving points.

116/ 128



Differential evolution inR

library(DEoptim)
library(parallel)
cl <- makeCluster(4)
clusterExport(cl, "f")
0 <- DEoptim(fn = 2,
lower = rep(-10, 2), upper = rep(10, 2),
control = list(strategy = 2,
cluster = cl, storepopfrom = 1))
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Many optima in high dimensions

Live demonstration time!
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Stochastic hill-climbing

Stochastic and gradient-based? Yes!

« Stochastic hill climbing: choose the descent direction at
random (with some useful probability)

- Stochastic gradient descent: compute the gradient using
only a sub-set of data
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Stochastic gradient descent

Opoq = O + r’vf(ek)
n: learning rate, Vf uses a random batch of data.
« Works well with large data sets with big data where the
full data set cannot be possibly used
- n is adaptive, starts small, tends to zero for convergence
« Can use back-tracking for optimal updates

« Pure SGD uses derivatives of the objective function with
only one observation, but the variance is too high.
Mini-batch gradient descent benefits from vectorised
operations (SIMD + parallelism)
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Any questions on stochastic methods?



Common issues in real applications




Numerical accuracy and optimisation

« Modern economic models rely heavily on numerical
computations
« The trend seems to be unidirectional, everything is getting
even more computationally intensive

Qualitative economic reasoning depends on the numeric
output

If the output is numerically wrong, statistical inference
is meaningless

« More numbers = more sources of error at each step
« The errors do not ‘average each other out’
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Step size and numerical Hessians

In many economic applications, standard errors are
obtained by inverting the numerical Hessian. Default
method settings can be bad. Always check the routine under
the hood. Wrong inference = paper might be retracted.

ugarchfit(spec = ..., data = ...)

Estimate Std. Error t value Pr(>|t])
omega 0.000010 0.000000 49.1672 0.000000
alphal 0.126679 0.014911 8.4956 0.000000
betal 0.731779 0.027181 26.9220 0.000000

ugarchfit(..., numderiv.control =
list(grad.eps = 1e-7, hess.eps = 1e-7))
Estimate Std. Error t value Pr(>|t])
omega 0.000010 0.000005 1.9747 0.048307

alphal 0.126679 0.037332 3.3933 0.000690
betal 0.731779 0.095098  7.6950 0.000000
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Tunnelling through local optima

« Stochastic tunnelling: randomly hop to a different
solution with probability depending on the function
difference (and its variants: TRUST 1997, STP 1999 etc.)

- Detrended fluctuation analysis:
nonlinearTseries: :dfa() to determine long-range
correlations and phenomena that might cause multiple
optima

- Acceptance (final stage of grief): in certain applications

where identification is not the point (e. g. multi-layered

neural networks), local minima can produce predictions

as accurate as those from the global optimum
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Optimisation speed-up

« Parallelise the gradient
« A package will be uploaded to CRAN soon
- Parallelise function evaluation in stochastic methods

« In nested optimisation, parallelise chunks to reduce
overhead

« Save the progress in chunks as well
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Optimisation with hundreds of parameters

« Simultaneous perturbation stochastic approximation:
compute approximate gradients by shifting many
parameters at once

« Barzilai-Borwein spectral projected gradients

+ Update subspaces of parameters

« Truncated Newton-like methods: symmetric rank 1,
truncated BFGS
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Barzilai-Borwein SPG method

Recall the NR update formula: 6,,, = 8, — [VZ(6,,)]7'V(6,,).
Idea: Assume that V]?(Gk) % 0.

Unlike line search (scale the gradient), in
spectral-projected-gradient methods, the Hessian is scaled
instead using the previous-step information:

Opoq =6y + ahBE1Vf(9k)y
where B, = 0,/ is a diagonal matrix satisfying
B (6, = 0_1) = VA(6,) — V(B ;)
Step size: —V(6,)/ 0, (still line search).
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SPG implementationin R

Optimise the 100-dimensional Rosenbrock banana function:

fx)= > 10006 —xt)?+(1-x_,2, X =(1,..,1)
i=2,4,6,...

banana <- function(x) {

j <- 2 % (1:(length(x)/2))

sum(100 * (x[3] - x[j-11*2)72 + (1 - x[3-11)"2)
}

library(BB)

set.seed(1)

BBoptim(par = rnorm(100), fn = banana)
spg(par = rnorm(100), fn = banana)
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Optimisation with millions of parameters

- All about stochastic gradient descent in batches

« SGD with momentum, SGD with adaptive delta, SGD with
custom learning rates for each parameters

- If necessary, assume sparsity, penalise non-zero
parameters
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Thank you for your attention!
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